Projet
SCOo0P

uéhlcules et rm:tes cnnnectés

nnecte

PKI architecture and technical
specifications (v2)

Activity 2: Studies Sub-activity 2.4 > Specifications

* *
* 4 x

Co-financed by the Connecting Europe
Facility of the European Union

The contents of this publication are the sole responsibility of the SCOOP@F project consortium and do not
necessarily reflect the opinion of the European Union.

Projet

O @ Scoop 2.4.4.6_PKI architecture and technical specifications

Information on the document
To set out this deliverable, SCOOP Partner modified ISE project’s deliverable ISX-TEO-SE-ISE-LIV-
0061_0.10, in order to take into account the global PKI architeture choosen in SCOOP. This action has been
taken following SCOOP Studies SC in date of 08" April 2015.

Then, new modification were inserted in light of ISE Project’s new release ISX-TEO-SE-ISE-LIV-0061_1.1,
in date of date 15/07/15 (public release).

Document: PKI Architecture and technical specifications
Date of publication: 12/05/2017

Responsible, Entity: Houda LABIOD, Telecom ParisTech

Status: Version 2.00 — Approved

Publication history

12/05/2017 2.00 TPT New deliverable Release 2
H. Labiod
JP. Monteuuis

Reference to the version administration

Version number to be composed of 3 digits > vR.XY

- R corresponds to the release number : it is upgraded each time SC Studies validates the diffusion of a new release,
- X is the major version number: it is upgraded each time SC Studies validates the deliverable,

- 'Y is the minor version number: it is upgraded each time a contributor changes anything.

Once the deliverable is approved, its version number is upgraded from vR.XY to vR.(X+1)0

Once the deliverable is release, its version number is upgraded from vR.XY to v(R+1).00

As illustration :
0.03 > Waork in progress version
0.10 > Del. Approved by SC Studies but not released
2.00 > Del. approved & released (in release 2)
2.05 > Del. Updated - in progress version

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 2/53

~ 2.4.4.6_PKIl architecture and technical specifications

Table of Contents

N [1 £ o 18 [ox 1o o IR PP 4
1.1 OBJECHVE .. 4
1.2 TypographiC CONVENTIONS........cciiiiiiiiiie e e e e e e e e e e e e e e e e eesaa s e e e e e e eeeanne 4
1.3 Definitions and abbreViations ... 4
14] (=] =] [SRR 5
2. SYSIEIM OVEIVIEW.uuiiiiee e e eeeeeeettie e e e e e e e e e et e e e e e e e e eeeeeaa e e aeaeeeeeessasa s eeeeeeeeeesssnnnaaeaeeeeeennnes 7
2.1 High level arChiteCUIccooiiei e e 7
2.2 DeSCription Of TOIESo 8
2.3 Higher-layer supported ProtOCOIS..........cooviiiiiiiii e 8
G T = () V1 (=] 1 0 PP 10
3.1] o 1] 1T 10
3.2 DAta SITUCTUINES ...ttt et e et e e e et e e et et e e e e e e e e e e rn e e e e e anaeeas 17
3.3 o S R =T 0 BTSSP 25
4. AppendiX A: EXaMPIES Of TEQUEST.uuuuitiiiiiiiiiiiiiiiieieiiib bbb eenenaae 38
4.1 Long Term Certificate request eXample.........ccoooeeviiiiiiiiiiiiie e e 38
4.2 Pseudonym Certificate request eXamplecccooiiiiiiiiiiiii e 40
5. Appendix B: ENCryption Of @ MESSAQGEcceiviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 44
6. AppendiX C: ASN.L MOAUIEoueiii e e e e e e e e e e e e e eeenens 45

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 3/53

Projet

O @ Scoop 2.4.4.6_PKIl architecture and technical specifications

1. Introduction

This document is primarily written for the implementers. The document provides references
to the high-level PKI architecture and directs the reader to the detailed information cited in
the document [i.1].

The following typographic conventions are used in this document:

EX ::= SEQUENCE {} Code example
111 Numbers in-between square brackets are references to publications mentioned in the
appendix References.

For the purposes of the present document, the following definitions and abbreviations

apply:
Access Point Access pointis a HTTP URL used to access web
services of the PKI.
Anonymity Anonymity is the ability of a user to use a

resource or service without disclosing its identity.

Pseudonym Certificate Authority Security management entity responsible for

(PCA) iIssuing, monitoring the use of authorization
tickets.

Pseudonym Certificate (PC) Data object that demonstrates that the holder has
permissions which entitle him to take specific
actions.

Confidentiality Confidentiality is a set of rules or a promise that

limits access or places restrictions on certain
types of information.

Certificate Revocation List (CRL) Certificate Revocation List is a list digitally signed
by a CA that contains certificates identities that
are no longer valid.

Distribution Center (DC) Distribution Center provides ITS-S the updated
trust information necessary for performing the
validation process to control that received
information is coming from a legitimate and
authorized ITS-S or PKI certification authority.

Integrity Integrity means maintaining and assuring the
accuracy and consistency of data over its entire
life-cycle.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 4/53

Projet
2.4.4.6_PKI architecture and technical specifications

ITS Station (ITS-S): ITSS-V or ITSS- ITS Station is end-user of the PKI system. The

R PKI system provides it different certificates (LTC
or PC) to allow secure communications. ITS-S
can be normal vehicles, public safety vehicles,
roadside stations, nomadic devices and traffic
management centers...

Manufacturer Manufacturer installs necessary information for
security management in ITS-S at production.
Security management entity responsible for the

Long Term Certificate Authority life cycle management of long term certificate

(LTCA) (LTC).

Long Term Certificate (LTC) Data object that is used in message exchanges
between an ITS Station and a security
management entity and demonstrates that the
valid holder is entitled to apply for pseudonym
certificate.

Root CA (RCA) Root Certificate Authority is the root of trust for all
certificates within the PKI hierarchy. Root CA
issues certificates for EAs and PCAs to authorize
them to issue certificates to end-entities. It also
defines and controls policies among all certificate
issuers. The Root CA is required when a new
LTCA or PCA shall be created, or when the
lifetime of LTCA or PCA certificate expires.

Trust-service Status List (TSL) The Trust-service Status List is a signed list
which contains new RCA certificates, LTCA and
PCA certificates and PKI service addresses (PCA
and DC). This list is signed by the RCA and can
be transmitted over the air.

The following references documents are not essential to the use of the present document
but they assist the user with regard to a particular subject area.

[1]1 ETSI TS 103 097 (v1.2.1): ITS; Security; Security header and certificate formats
[2] ETSI TS 102 941 (v1.1.1): ITS; Security; Trust and Privacy Management

[3] X.680: Information Technology - Abstract Syntax Notation One (ASN.1): Specification
of basic notation

[4] X.690: Information Technology - ASN.1 encoding rules: Specifications of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding
Rules (DER)

[5] X.691: Information Technology - ASN.1 encoding rules: Specification of Packed

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 5/53

Projet
) S€o0P

2.4.4.6_PKIl architecture and technical specifications

Encoding Rules (PER)
[6] RFC2616: HTTP/1.1

[7] NIST SP 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality

[8] ETSI EN 302637-2: ITS; Vehicular Communications; Basic Set of Applications; Part 2:
Specification of Cooperative Awareness Basic Service

[9] ETSI EN 302637-3: ITS; Vehicular Communications; Basic Set of Applications; Part 2:
Specifications of Decentralized Environmental Notification Basic Service

[10] ETSI TR 102 965: ITS; Application Object Identifier (ITS-AID); Registration list

[11] FIPS 198-1: The Keyed-Hash Message Authentication Code (HMAC)

The following references documents are not essential to the use of the present document
but they assist the user with regard to a particular subject area.

[i.1] PKI System Requirements Specifications (ISX-TEO-SE-ISE)- Deliverable 2.4.4-5
[i.2] RFC5246: The TLS Protocol version 1.2

[i.3] RFC5084: Using AES-CCM and AES-GCM Authenticated Encryption in the
Cryptographic Message Syntax (CMS)

[i.4] SEC 1: Elliptic Curve Cryptography version 2.0

[i.5] ETSITS 102 860: Intelligent Transport Systems (ITS); Classification and management
of ITS application objects

[i.6] PKI architecture and technical specifications (v0.10) (ISX-TEO-SE-ISE)

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 6/53

5) Projet | o
SCOOP 2.4.4.6_PKIl architecture and technical specifications

2. System overview

This document describes the functionalities of the PKI system for ISE project.
The PKI system is divided into four entities:

« The Root Certificate Authority for the generation of CA private keys, a key step in the
initiation of a trust chain.

« Long Term Certificate Authority (LTCA), used by Manufacturer and ITS-S, respectively
for the ITS-S lifecycle management and for the provisioning of LTCAs.

« The Pseudonym Certificate Authority (PCA) used by ITS-S, for requesting PCs.

« The Distribution Center, used by ITS-S to retrieve CRL and TSL.

The PKI for ITS-S is a set of software modules enabling distribution of certificates for
secured communication between ITS-S.

Figure 1 shows the SCOOP-ISE PKI high level architecture.

OFFLINE 4
|

7 RCA N\
7 I N
/ AN
ONLINE I \
l <&l ' Manufacturer
PCANn '
i’ i'i ‘i =
DC LTCA

ITS-Station

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 7153

O @ Scoop 2.4.4.6_PKIl architecture and technical specifications

The “operator” role is to install and update necessary information for security management
in ITS-S during operation.

The “manufacturer” role is to install necessary information for security management in ITS-
S at production. More precisely, the manufacturer bootstraps the process for manufacturing
a trusted ITS-S in production site, i.e. generates and stores securely required crypto-
material in its security module, initializes RCA and LTCA certificates and their associated
network addresses.

The “ITS-Station” role is to request certificates (LTCs and PCs) from the LTCA and PCA.
ITS Station only has access to the web service interface.

The hereafter described protocol tries to reach the following security objectives:

« Authentication/authorization control: authentication consists to be sure of the
identity which sends data. Authorization control is the verification of an access policy,
based on a trusted authentication. Authenticate all entities participating in the protocol
is required to prevent illegitimate persons to enter in the system, or to access some
unauthorized resources or services.

« Integrity: the integrity of all transmitted data is important to ensure that the contents of
the received data are not altered.

« Confidentiality/Privacy: data should only be accessed by authorized entities. The real
identity of ITS Station has to be protected, by cryptographic mechanisms and depending
on the type of data sent.

« Non-repudiation/Traceability: Non-repudiation is necessary to prevent ITS Station or
others entities from denying the transmission or the content of their messages.
Traceability, which is the warranty that an entity can’t refute the emission or reception
of information, is also extremely important.

« Unlinkability: ability of a user to make multiple uses of resources or services without
others being able to link these uses together.

« Anonymity: ability of a user to use a resource or service without disclosing the user's
identity.

To support security management of trusted ITS-S (vehicles, road-side or center stations),
an automatic communication means with the different PKI modules shall be provided by
the ITS-S embedded system. This section specifies the higher layers of the protocol stack
(see figure 2) and assumes either a fixed or cellular network with the ITS-S or an ITS G5
communication profile supporting IP connectivity.

Machine-to-machine communications with the LTCA, PCA, and DC components use
HTTP/1.1 as a transport mechanism, over TCP, over IP. No supplementary cryptographic

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 8/53

G) Projet
§§o}og 2.4.4.6_PKIl architecture and technical specifications

layer such as TLS is required.

Messages are sent as HTTP GET or POST requests. Parameters for the POST requests
and responses, and complete path for GET requests are described in the corresponding
messages descriptions.

The chosen encoding rules are ASN.1 DER (Distinguished Encoding Rules), defined in [4].

Human-to-machine communications with the LTCA and PCA use HTTP/1.1 as a transport
mechanism, over TCP, over IP, with TLS. A web interface (used by operators and
manufacturers) is intended: this is out of scope of this document.

n Operator ' Operator

HTTPS HTTPS

Web Service
HTTP (POST/GET)

"_ o

Manufacturer A

>

Web Service Web Service
HTTP (POST/GET) HTTP (POST/GET)

HTTP —f

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 9/53

@) Projet | -
O @ Spqop 2.4.4.6_PKI architecture and technical specifications

3. PKI System

The features of RCA component (see deliverable 2.4.4-5) are:

Creation of RCA key pair and self-signed certificate;
Issuance of CA (LTCA or PCA) certificates;
Revocation of CA (LTCA or PCA) certificates;
Generation of CA CRLs;

Generation of a TSL.

3.1.1.1 Create a RCA certificate

Objective
Create a RCA certificate.

Input Data
The following information is provided:
« The assurance level
e« The ITS AID list
« The validity restrictions
- The dates (time_start_and_end)
- The region (optional)
« The name of the Certificate Authority (optional)

Output Data
A RCA certificate is created. The format of this certificate is described in ETSI Standard,
see [1].

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 10/53

Projet

O @ Scoop 2.4.4.6_PKI architecture and technical specifications

3.1.1.2 Create a LTCA certificate

Objective
Create a LTCA certificate.

Input Data

The following information is provided:

The public keys (verification and encryption) to be signed.
The ITS AID list in accordance with the ITS AID list of RCA.
The assurance level.

The validity restrictions

- The dates (time start and end)
- The region in accordance with RCA’s region (if applicable)

« The name of the Certificate Authority (optional).

Output Data
An LTCA certificate is created. The format of this certificate is described in ETSI| Standard,
see [1].

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

3.1.1.3 Create a PCA certificate

Objective
Create a PCA certificate.

Input Data

The following information is provided:

The public key (verification key and encryption key) to signed
The assurance level

The ITS AID list in accordance with ITS AID list of the RCA
The validity restrictions

- The dates (time_start_and_end)
- The region in accordance with RCA’s region (if applicable)

« The name of the Certificate Authority (optional)

Output Data
A PCA certificate is created. The format of this certificate is described in ETSI Standard,
see [1].

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 11/53

Projet

O @ Scoop 2.4.4.6_PKI architecture and technical specifications

3.1.1.4 Revoke a CA certificate

Objective
Revoke a CA certificate (LTCA or PCA).

Input Data
The following information is provided:

e A LTCA or PCA certificate to be revoked

Output Data
A successful response is sent.

Traceability
The action is entered in the audit log.The action is viewable in the log from the operator
interface.

3.1.1.5 Generate a CA Certificate Revocation List (CRL)

Objective
Generate a CA Certificate Revocation List.

Input Data
The following information is provided:

e The List of revoked certificates

Output Data
The CA CRL is generated. The format of the CA CRL is described in 3.2.6.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

3.1.1.6 Generate Trust-service Status List (TSL)

Objective
Generate the Trust-service Status List.

Input Data
The following information is provided:

e« CAs (RCA, LTCA, PCA) certificates
o PKI services addresses (RCA address, LTCA address, PCAs addresses and DC
address)

Output Data
The TSL is generated. The format of the TSL is described in 3.2.7.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 12/53

Projet

O @ Scoop 2.4.4.6_PKI architecture and technical specifications

The features of LTCA component (described in the first deliverable “PKI System
Requirements Specifications”) are:

Registration of ITS-S

Management of ITS-S status

Management of ITS-S permissions

Issuance of Long Term Certificates

Verification of ITS-S permissions for PC request

3.1.2.1 Register ITS Station
This feature is executed directly by the manufacturer through a graphical user interface
(GUI.

3.1.2.2 Change status of ITS Station

This feature is executed directly by the manufacturer or the operator through a graphical
user interface.

3.1.2.3 Change permissions of ITS Station
This feature is executed directly by the manufacturer through a graphical user interface.

3.1.2.4 Request a long-Term Certificate (LTC)

Role(s)
Only the ITS Station possessing the appropriate elements can perform this action.

Objective
An ITS Station requests a long-Term Certificate (LTC).

Input Data
ITS Station provides the following information:

The canonical identifier of ITS Station called unique identifier is livrable 2.4.4-4v2
The public key (verification key)

The response decryption public key

The ITS AID SSP List (see [8] and [9])

The validity restrictions (optional)

- The date(s)
- The region

Output Data
LTCA returns a message containing:

« ALTC, the format of this certificate is described in ETSI Standard, see [1].
o A response code (see 3.3.3.2 for more information).

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 13/53

Projet
2.4.4.6_PKIl architecture and technical specifications

Possible errors
For each of the errors below, an error message is returned to ITS Station responsible for
the action.

« ITS Station fails to provide the required values in the request
« ITS Station is unknown (not registered)

« An internal error occurs

o Etc.

Traceability

The action is entered in the audit log.

The action is viewable in the log from the operator interface.

The traceability of this action is mandatory to lift the anonymity of ITS station.

3.1.2.5 Validate a Pseudonym Certificate (PC) request

Role(s)
Any PCA can perform this operation.

Objective
Validate a PC request before producing a PC to the relevant ITS-S.

Input Data
The PCA provides the following information as below to the LTCA for authenticating the
requesting ITS-S and checking its permissions to get requested Pseudonym Certificate:

« LTCA identifier
« Validity restrictions
- The date(s)
- The region (optional)
e Subject attributes
« Encrypted structure containing the signature and the LTC identifier

Output Data
LTCA returns a message containing:

« A response code (see 3.3.5.2 for more information).

Possible errors

e The ITS-S is not authorized to get pseudonym certificates
o The ITS-S is not managed by the LTCA
o Etc.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 14/53

2.4.4.6_PKIl architecture and technical specifications

The features of PCA component (described in the first deliverable “PKI System
Requirements Specifications”) are:

The issuance of Pseudonym Certificate.

3.1.3.1 Request pseudonym certificate(s) (PC)

Role(s)
Any ITS possessing an LTC can request a PC.

Objective
ITS station requests PC.

Input Data
ITS Station provides the following information:

Verification public key(s)
Encryption public key(s)
LTCA identifier

Validity restrictions

- The date(s)
- The region (optional)
Subject attributes

Output Data
PCA returns a message containing:

A PC, the format of this certificate is described in ETSI Standard, see [1].
A response code (see 3.3.4.23.3.5.2 for more information).

Possible errors
For each of the errors below, an error message is returned to the ITS -S responsible for
the action, if:

The ITS-S fails to provide the required values in the request;

The LTCA cannot be reached;

The LTCA is unable to verify permissions of relevant ITS Station (see Validate PC
request function);

An internal error occurs;

Etc.

Traceability

The action is entered in the audit log.

The action is viewable in the log from the operator interface.

The traceability of this action is mandatory to lift the anonymity of ITS station.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 15/53

) Projet

O @ Scoop 2.4.4.6_PKI architecture and technical specifications

The features of DC (described in the first deliverable “PKI System Requirements
Specifications”) are:

o Publication of a TSL;
o Publication of CA CRLs.

3.1.4.1 Get CA Certificate Revocation List

Role(s)
Everybody can perform this operation.

Objective
Everybody retrieves an updated CRL.

Output Data
The DC provides the CRL. The format of this CRL is described in 3.2.6.

Possible errors

For each of the errors below, an error message is returned to the ITS Station responsible
for the action.

« An internal error occurs.

o Eftc.

3.1.4.2 Get Trust-service Status List

Role(s)
Everybody can perform this operation.

Objective
Everybody retrieves an updated Trust-service Status List.

Output Data
The DC provides the TSL. The format of this TSL is described in 3.2.7.

Possible errors
For each of the errors below, an error message is returned to ITS-S responsible for the
action.

¢ An internal error occurs
o [Etc.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 16 /53

()5 Projet | o
O@ Spoop 2.4.4.6_PKIl architecture and technical specifications

The data structures pata, signedpata, Encryptedpata and associated algorithm identifiers
types described below are used to build protocol messages between ITS-S and PKI, and
between PKI entities, with clearly defined security properties.

The CRL structure allows the revocation of long duration certificates (LTCs) used by actors
and PKI entities.

e version IS placed first to allow for the block format to change (should not be used to
describe the version of the inner content)

e contentType describes what is to be found in the associated inner content (and its
version)

« cryptographic parameters are before the data to decrypt/verify (hash/signature
algorithm, recipients, encryptionParameters), this allows to stream data

e signature IS placed after the data

-used as the most external container
The content is optional to allow for external content declaration

Data ::= SEQUENCE ({
version Version DEFAULT vl,
contentType ContentType,
content OCTET STRING OPTIONAL }

ContentType ::= OBJECT IDENTIFIER

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 17/53

G @ Scoop 2.4.4.6_PKIl architecture and technical specifications

This section defines sets of algorithms:

signature algorithms

data encryption algorithms
key encryption algorithms
hash algorithms

Each defined algorithm is associated to a unique identifier and is accompanied by optional
parameters where applicable. The sets of algorithms are dynamically extensible (at
runtime), which allows for crypto agility.

SignatureAlgorithmIdentifier ::= SEQUENCE ({
algorithm ALGORITHM. &id ({SignatureFunctions}),
parameters ALGORITHM. &Type ({SignatureFunctions}{@algorithm}) OPTIONAL }

ContentEncryptionAlgorithmIdentifier ::= SEQUENCE ({
algorithm ALGORITHM. &id ({DataEncryptionFunctions}),
parameters ALGORITHM. &Type ({DataEncryptionFunctions}{@algorithm}) OPTIONAL }

HashAlgorithmIdentifier ::= SEQUENCE ({
algorithm ALGORITHM. &id ({HashFunctions}),
parameters ALGORITHM. &Type ({HashFunctions}{@algorithm}) OPTIONAL }

KeyEncryptionAlgorithmIdentifier ::= SEQUENCE ({
algorithm ALGORITHM. &id ({KeyEncryptionFunctions}),
parameters ALGORITHM. &Type ({KeyEncryptionFunctions}{@algorithm}) OPTIONAL }

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 18/53

) Projet

Scoop 2.4.4.6_PKIl architecture and technical specifications

.

'

8

R
A

Q
@

This data structure is flexible enough to allow for internal or external signed content,
multiple signers, multiple signatures, and one-pass verification (stream).

Data is signed using the following process:

e an empty signedpata Structure is created, with version set to vl,
and signedcontentType Set to the appropriate value
« the signed data can either be enclosed in an OCTET STRING and included in
the signedpata Structure, or left aside (detached or external signature)
« each signer does:
- choose the preferred hash algorithms: one to digest the signed content, one to digest
the attributes

- optionally include those hash algorithm identifiers in the hashalgorithms collection, in
order to facilitate the one-pass signature verification

- digest the signed content and store the result in an attribute Structure of type attr-

messageDigest
- Create an attribute Structure of type attr-contentType CONtaining
the signedContentType value
- create a signerInfo Structure containing:
» the 2 precedent attribute structures in the signedattributes collection
= an optional Attribute Of type attr-signingTime in the signedAttributes collection
» the signerrdentifier Set to the appropriate value
= optionally the certificate chain in order to validate the signer
» the digestalgorithm equal to the hash algorithm used to digest the signed content
» the signaturealgorithm Set to the signature algorithm used by the signer
» the signature value, result of the signature operation applied to the serialization
of the signedAttributes Structure
- include the composed signerinfo Structure in the signerinfos collection

It is important that the attr-messagepigest and attr-contentType attributes are included in
the signedattributes. Their presence is mandatory. The attr-signingrime iS Optional, and
can be required depending on the context.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 19/53

(@)G) Projet
O @ quog 2.4.4.6_PKIl architecture and technical specifications

SignedData ::= SEQUENCE ({
version Version DEFAULT vl,
hashAlgorithms HashAlgorithmsIdentifiers,
signedContentType ContentType,
signedContent OCTET STRING OPTIONAL,
signerInfos SignerInfos }

HashAlgorithmsIdentifiers ::= SEQUENCE OF HashAlgorithmIdentifier
SignerInfos ::= SEQUENCE OF SignerInfo
SignerInfo ::= SEQUENCE ({

version Version DEFAULT vl,
signer [0] SignerIdentifier DEFAULT self:NULL,
digestAlgorithm [1] HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },

signatureAlgorithm [2] SignatureAlgorithmIdentifier DEFAULT { algorithm
ecdsa-with-SHA256 },

signedAttributes SignedAttributes,
certificateChain SEQUENCE OF Certificate OPTIONAL,
signature SignatureValue }

SignerIdentifier ::= CHOICE {
self NULL,
certificateDigest CertificateDigest,
certificate Certificate }

CertificateDigest ::= SEQUENCE ({
algorithm HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },
digest HashedId8 }

SignedAttributes ::= SEQUENCE OF Attribute

Attribute ::= SEQUENCE {
attrType ATTRIBUTE.&id ({SupportedAttributes}),
attrValue ATTRIBUTE.&Type ({SupportedAttributes} {@attrType}) OPTIONAL }

SignatureValue OCTET STRING

-- Signaturevalue Should be opaque to the user/caller of security functions.
-- Internally, an ECDSA signature contains the following structure:

Ecdsa-Sig-Value ::= SEQUENCE ({
r INTEGER,
s INTEGER }

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 20/53

) Projet
2.4.4.6_PKIl architecture and technical specifications

©)© SCOoP

Data is encrypted to a number of recipients following this process:

« The sender chooses a content encryption algorithm and parameters.

« The sender randomly generates a content encryption symmetric key.

« The sender encrypts this content encryption symmetric key for each recipient.

« For each recipient, a corresponding recipientinfo Structure is built.

« The content is encrypted using chosen algorithm, parameters, and content encryption
symmetric key.

« The encrypted content, encryption algorithm parameters, and all recipientinfo instances
are collected together to form an encryptedpata Structure.

When the recipient is identified by its public key and not by its certificate (for example when
the recipient requests a certificate), the recipients field of type nashedras shall be calculated
as the 8 lowest order octets of the SHA256 digest of the encoded public key in compressed
form.

If the encrypted content is to be transmitted outside of this encryptedpata structure,
the Encryptednata structure can be used to transport the encrypted symmetric encryption
key and encryption parameters. The encryptedcontent €lement is optional.

EncryptedData ::= SEQUENCE ({
version Version DEFAULT vl,
recipients RecipientInfos,
encryptedContentType ContentType,
encryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
encryptedContent OCTET STRING OPTIONAL }

RecipientInfos ::= SEQUENCE SIZE (l..MAX) OF RecipientInfo

RecipientInfo ::= SEQUENCE ({
recipient HashedIds8,
kexalgid KeyEncryptionAlgorithmIdentifier DEFAULT { algorithm id-ecies-103097 1},
encryptedKeyMaterial OCTET STRING }

If kexalgid is the algorithm identified by id-ecies-103097, then the encryptedKeyMaterial shall
contain the serialization of an eciesencryptedrey103097 data type.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 21/53

@ Projet | o
G@ SFQOR 2.4.4.6_PKIl architecture and technical specifications

The Certificate Revocation List (CRL) is generated and signed by the RCA component.

ASN.1 notation definition

Crl ::= SEQUENCE {
unsigned crl ToBeSignedCrl,
signature algorithm SignatureAlgorithmIdentifier,
signature Signature } -- signature is applied on unsigned crl

ToBeSignedCrl ::= SEQUENCE {
version Version,
signer SignerIdentifier,
—-- ca_id HashedId8, -- redondant si le modele crl signer n'est pas supporté)
thisUpdate Time32,
nextUpdate Time32,
entries SEQUENCE OF HashedId8 }

3.2.7

ASN.1 notation definition

Tsl ::= SEQUENCE ({
unsigned tsl ToBeSignedTsl,
signature algorithm SignatureAlgorithmIdentifier,
signature SignatureValue }

-— signature is applied on unsigned tsl

ToBeSignedTsl ::= SEQUENCE {
version Version,
signer info SignerIdentifier,
notBefore Time32,
notAfter Time32,
trust services SEQUENCE OF TrustService }

TrustService ::= SEQUENCE {
serviceId TRUSTSERVICE. &id ({TrustServiceSet}),
serviceValue TRUSTSERVICE. &Value ({TrustServiceSet}{@serviceId}) }

TrustServiceSet TRUSTSERVICE ::=
{ ts-foreignRoot

| ts-renewedRoot

| ts-ea

| ts-aa

| ts-distributionCenter

| ts-otherTslPointer

; ocoo Uk

TRUSTSERVICE ::= CLASS {
&id ENUMERATED UNIQUE,
&Value }

WITH SYNTAX ({
SYNTAX &Value
ID &id }

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 22153

@) Projet | -
quog 2.4.4.6_PKIl architecture and technical specifications

ts-foreignRoot TRUSTSERVICE ::= ({
SYNTAX Certificate
ID ServiceType:foreignRoot }

ts-renewedRoot TRUSTSERVICE ::= ({
SYNTAX SEQUENCE ({
rootCertificate Certificate,
linkRootCertificate Certificate }
ID ServiceType:renewedRoot }

ts-ea TRUSTSERVICE ::= {
SYNTAX SEQUENCE {
certificate Certificate,
linkedCertificate Certificate OPTIONAL,
accessPoint IA5STRING }
ID ServiceType:ea }

ts—-aa TRUSTSERVICE ::= {

SYNTAX SEQUENCE {
certificate Certificate,
accessPoint IAS5STRING }

ID ServiceType:aa }

ts-distributionCenter TRUSTSERVICE ::= {
SYNTAX IASSTRING
ID ServiceType:distributionCenter }

ts-otherTslPointer TRUSTSERVICE ::= {
SYNTAX IASSTRING
ID ServiceType:otherTslPointer }

ServiceType ::= ENUMERATED ({
foreignRoot,
renewedRoot,
ea,
aa,
distributionCenter,
otherTslPointer,

}

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 23/53

2.4.4.6_PKIl architecture and technical specifications

Some data types defined in ETSI TS 103097 and used in this protocol need to be redefined
in ASN.1 notation:

HashedId8 ::= OCTET STRING (SIZE(8))
Certificate ::= OCTET STRING
Time32 ::= INTEGER (0..4294967295)

The types subjectattribute, ValidityRestriction, verification key and its_aid ssp list are

defined in ETSI TS 103097.

A vector of subjectattribute €lements as used by this protocol will be represented by the
subjectattributes type. The content of an element of this data type will be the binary
serialization of a variable-length vector with variable-length length encoding of
subjectattribute elements. Similarly, a vector of validityrestriction elements will be
represented by the vaiidityrestrictions type, and the content of an element of this data
type will be the binary serialization of a variable-length vector with variable-length length
encoding of validityrestriction €lements.

SubjectAttributes ::= OCTET STRING
ValidityRestrictions ::= OCTET STRING

For example, a vector of 2 subjectattribute elements (@ verification key and an
its aid ssp list composed of 2 ITS-AID-SSP) will be encoded as the octet
string “30000002C43CDAOAD74CC8A93141DBE4F2C353EDB8DD416DB14F1766A638
EOOB7EE2A752210B2403010000250401000000", which is decomposed as:

30 (variable-length length of the vector)
{
00 (type=verification key)
{ <PublicKey>
00 (algorithm=ecdsa nistp256 with sha256)
{ <EccPoint>
02 (type=compressed lsb y 0)
C43CDAOAD74CC8A93141DBE4F2C353EDB8DD416DB14F1766A638E00B7EE2AT752 (x)
}
}
21 (type=its_aid ssp list)
{
0B (variable-length length of the vector)
{
24 (its_aid=CAM)
03 (variable-length length of the SSP)
010000 (service specific permissions)
25 (its_aid=DENM)
04 (variable-length length of the SSP)
01000000 (service specific permissions)

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 2453

O @ Scoop 2.4.4.6_PKIl architecture and technical specifications

RCA generates its key pair and generates its self-signed certificate under trusted roles
control.

LTCA and PCA requests are transmitted by an off-band mechanism to the RCA entity.
3.3.2.1 Request format

ITscertificaterequest data type defines a standalone certificate request, which can be
used to transport LTCA or PCA certificate request to the RCA.

ITSCertificateRequest ::= SEQUENCE ({

itsCertReq ITSCertificateRequestContent,

signatureAlgorithm SignatureAlgorithmIdentifier DEFAULT { algorithm ecdsa-with-SHA256 },
signature SignatureValue }

ITSCertificateRequestContent ::= SEQUENCE ({
version Version DEFAULT vl,

subjectName OCTET STRING (SIZE(0..32)),
subjectAttributes OCTET STRING,
validityRestrictions OCTET STRING }

The following profile shall apply:

e version IS setto vl (0)

e subjectattributes Shall contain the serialization of a subjectattributes data type and
shall contain both a verification key and an encryption key €lements

e validityRestrictions Shall contain the serialization of the vaiidity restrictions data
type

« the signature is applied to the itscertreq field using the private key corresponding to the
public key declared as verification key (i.€. the request is self-signed)

e subject attributes and validity restrictions are defined in [1]

POST http://<ea_access_point>

Inputs:

e Content-type: application/x-its-request

e Content: binary encoded EnrolmentRequest Object
Outputs:

e Content-type: application/x-its-response

e Content: binary encoded EnrolmentResponse object

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 25/53

@) Projet | -
O @ Spqop 2.4.4.6_PKI architecture and technical specifications

3.3.3.1 Request format

The ITS-S must build its LTC request by following this process:

« an ECC private key is randomly generated (the response-decryption-key), the
corresponding public key is computed (response-encryption-key)
e an InnerkCrequest Structure is built, containing:

a randomly generated requestIdentifier
the canonical identifier of the ITS-S

the desired attributes

some optional restrictions

the response-encryption-key

e A signedpata Structure is built, with:

the signedcontentType S€t t0 id-ITS-ISE-ct-EnrolmentRequest

the signedcontent Containing the InnerEcRequest

the signedattributes collection containing an attr-signingrime attribute
the signer declared as self

the signature computed using the canonical private key

e AN EncryptedData Structure is bU”t, with:

the recipients are the LTCA, the recipient public key to use is the encryption key Of
the LTCA certificate

the encryptedContentType S€t t0 1d-ITS-ISE-ct-SignedData

the encryptedcontent containing the encrypted representation of the signedpata
structure

a Data structure is built, with:

the contentType S€L {0 id-ITS-ISE-ct-EncryptedData
the content containing the encryptednata Structure

InnerECRequest ::= SEQUENCE {

requestIdentifier OCTET STRING (SIZE(16)),

itsId IA5String,

wantedSubjectAttributes SubjectAttributes,
wantedValidityRestrictions ValidityRestrictions OPTIONAL,
responseEncryptionKey PublicKey }

wantedSubjectAttributes is the serialization of the subject_attributes structure defined in ETSI Standard
[1]; it must contain exactly one instance of the following elements:

e dverification key,

e aN its aid ssp list

wantedvalidityRestrictions iS the serialization of the subject validity restrictions defined
in ETSI Standard [1]; this field is optional because the LTCA already knows the ITS-S and
can set duration and region restrictions on its own.

The requestidentifier can be reused by the ITS-S if network connectivity has been lost
during the transaction. In that case, it is expected to send the exact same request.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 26/53

(e Projet | o
O @ Spqop 2.4.4.6_PKI architecture and technical specifications

Security characteristics

« lIdentity is ensured by the itsta present in the request.

« Integrity is ensured by the signature and verified by checking the signature against the
canonical public key associated to this itsza.

« Confidentiality is ensured by encrypting the request with the encryption public key of the
LTCA certificate.

« Anonymity of the requestor toward an external attacker is ensured by the confidentiality
of the request and its signature. Anonymity of the requestor toward the LTCA is not a
concern (LTCA must know and recognize the requestor).

3.3.3.2 Response format

The ITS-S shall receive a Data structure, containing an encryptednata structure, containing
a signedpata Structure, containing an 1nnerecresponse structure. In some specific error
cases, the encryptedpata structure can be missing, for example if the LTCA hasn’t been
able to read or validate the responseEncryptionkey in the request.

« if the LTCA has been able to read and to validate the responseEncryptionkey Iin the
request:
. the outermost structure is a Data structure with itS contentType S€t t0 id-1TS-ISE-ct-
EncryptedData
- the content octet string contains an encryptednata Structure, with:
= recipients references the responseencryptionkey Set in the request, the recipient
identifier is computed as described in section encryptedpata
= the encryptedContentType is set to id-1Ts- SE-ct-SignedData
" the encryptedcontent, ONce decrypted, contains a signedpata structure
« if the LTCA hasn’t been able to read and validate the responseEncryptionkey Iin the
request:
- the outermost structure is a Data structure with itS contentType S€t t0 id-1TS-1SE-ct-
SignedData
- the content contains a signedpata Structure

In both cases, this expected SignedData structure is:

e the signedcontentType IS S€t 10 id-ITS-ISE-ct-EnrolmentResponse

« the signedContent contains the InnerECResponse

e the signer is populated with the certificatenigest field, containing the Hashedld8 of the
LTCA

« the signature is computed using the LTCA certificate private verification key
corresponding to its public verification key found in the LTCA certificate

The InnerECResponse shall contain:

e the requestnash IS the left-most 16 octets of the SHA256 digest of the Data structure
received in the request

e a responseCode indicating the result of the request

o if responsecode IS 0, indicating a positive response, then a certificate is returned, and
optionally a CA contribution value for the ITS to compute its private key of his LTC
certificate (implicit certificates using ECQV).

« if responsecode IS different than 0, indicating a negative response, then no certificate and
no CA contribution value will be returned.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 27153

2.4.4.6_PKIl architecture and technical specifications

InnerECResponse ::= SEQUENCE ({

requestHash OCTET STRING (SIZE(1l6)),
responseCode EnrolmentResponseCode,
certificate OCTET STRING OPTIONAL,
cAContributionValue INTEGER OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

EnrolmentResponseCode ::= ENUMERATED {
ok (0),
cantparse, -- valid for any structure
badcontenttype, -- not encrypted, not signed, not enrolmentrequest
imnottherecipient, -- the "recipients" doesn't include me
unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
decryptionfailed, -- works for ECIES-HMAC and AES-CCM
unknownits, -- can't retrieve the ITS from the itsId
invalidsignature, -- signature verification of the request fails
invalidencryptionkey, —-- signature is good, but the responseEncryptionKey is bad
baditsstatus, -- revoked, not yet active
incompleterequest, —-- some elements are missing
deniedpermissions, -- requested permissions are not granted
invalidkeys, -- either the verification key of the encryption key is bad
deniedrequest, -- any other reason?

}

Security characteristics

Identity is ensured by the signer identifier of the signedpata Structure (contains the
Hashedld8 of the LTCA certificate).

Integrity is ensured by the signature and verified by checking the signature against the
verification key of the LTCA certificate.

Confidentiality is ensured by encrypting the response with the responseEncryptionkey
provided in the request. If this key was not valid, confidentiality is not ensured, but no
personal information is returned.

Anonymity of the requestor toward an external attacker is ensured by the absence of
identifiable information returned when no encryption is possible, and by encryption of
the response where possible.

POST http://aa_access_point

Inputs:

e Content-type: application/x-its-request
e Content: binary encoded authorizationRequest object

Outputs:

e Content-type: application/x-its-response
e Content: binary encoded aAuthorizationResponse object

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 28/53

@) Projet | -
O @ Spqop 2.4.4.6_PKI architecture and technical specifications

3.3.4.1 Request format
The ITS-S must build its PC request by following this process:

an ECC private key is randomly generated (the response-decryption-key), the
corresponding public key is computed (response-encryption-key)

a random 32 octets long secret key (hmac-key) IS generated

a tag using the HMAC-SHA256 function is computed using the previously generated
nmac-key, ON the concatenation of the serialization of verificationkey and encryptionkey
elements (encryptionkey IS optional); this tag is truncated to 128 bits and hamed keyTag
a sharedaTrRequest Structure is built, with:

- arandomly generated requestIdentifier

- the eatq identifying the LTCA to contact for verification
_ the calculated xeyrag

- the desired attributes

- some optional restrictions

- adesired start date and time

_ the response-encryption-key

a signedbata Structure is built, with:

. the signedContentType S€L 10 id-ITS-ISE-ct-SharedATRequest

- the signedattributes collection containing an attr-signingTime attribute

- the signedcontent is absent (external signature)

- the signer declared as a certificatenigest referencing the LTC

- the signature computed using the LTC certificate verification private key

an Encryptedbata Structure is built, with:

- the recipient is the LTCA, the recipient public key to use is the encryption key Of the
LTCA

- the encryptedContentType S€L 10 id-I1TS-ISE-ct-SignedData

- the encryptedcontent CcONtaining the encrypted representation of the
previous signedbata Structure

an InnerATRequest Structure is built, containing:

_ the verificationKey requested for certification

- an optional encryptionkey to be placed in the same certificate

_ the generated hmac-key

- the signedyrc containing the sharedaTrequest Structure

- the detachedEncryptedsignature Containing the preViOUS EncryptedData Structure

an Encryptedbata Structure is bU”t, with:

- the recipients are the PCA, the recipient public key to use is the encryption key Of the
PCA

- the encryptedcontentType S€t 10 1id-ITS-ISE-ct-AuthorizationRequest

- the encryptedcontent CcONtaining the encrypted representation of
the InnerATRequest Structure

a pata structure is built, with:

- the contentType S€t t0 id-1TS-ISE-ct-EncryptedData
- the content coNtaining the previous encryptedpata Structure

wantedSubjectAttributes Shall not contain a verification key OF

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 29/53

)G Projet

scow 2.4.4.6_PKIl architecture and technical specifications

A A 9 O COr N
e Vv v TEe

an encryption key attribute, but shall contain an its aid ssp list attribute.

SharedATRequest ::= SEQUENCE ({
requestIdentifier OCTET STRING (SIZE(16)),
eald HashedId8§,
keyTag OCTET STRING (SIZE(l6)),
wantedSubjectAttributes SubjectAttributes,
wantedvValidityRestrictions ValidityRestrictions OPTIONAL,
wantedStart Time32,
responsekEncryptionKey PublicKey }

InnerATRequest ::= SEQUENCE ({
verificationKey PublicKey,
encryptionKey PublicKey OPTIONAL,
hmacKey OCTET STRING (SIZE(32)),
signedByEC SharedATRequest,
detachedEncryptedSignature EncryptedData }

The figure 3 illustrates the structure of a PC request.

Encrypted Data to AA

Hmac Key

Verification Public Key(s)
Encryption Public Key(s)

Shared AT Request
Request Identifier

EA Identifier

Key Tag

Validity Restrictions
Subject Attributes
Response Encryption Key

Signed by EC

Encrypted Data to EA

Signature 4= ECidentifier

Figure 3: Structure of a PC request

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 30/53

5) Projet
© 3Co0P

2.4.4.6_PKIl architecture and technical specifications

Security characteristics

« Identity is ensured by the signer identifier present in the encrypted signature.

« Integrity is ensured by the signature and verified by checking the signature against the
public key associated to this signer (found in the corresponding LTC). The signature
indirectly covers the verificationKey and encryptionKey elements, by their digests
(second pre-image resistance of the hash function, which is greater than the collision
resistance used in signatures). The PCA cannot verify the signature, only the LTCA can
do it, but the PCA can verify the requested permissions, and can verify that the HMAC
signature of the public keys match the given xeyrag.

« Confidentiality toward an external attacker is ensured by encrypting the request to the
encryption key of the PCA.

« Anonymity of the requestor toward an external attacker is ensured by the confidentiality
of the request and its signature. Anonymity of the requestor toward the PCA is ensured
by the additional encryption of the signature and the signer. Anonymity of the requestor
toward the LTCA isn't a concern (the LTCA must know and recognize the requestor).

« Unlinkability of the pseudonym certificates toward an external attacker is ensured by the
confidentiality characteristics. Unlinkability of the pseudonym certificates toward the
PCA is ensured by the additional encryption of the signature and the signer. Unlinkability
of the pseudonym certificates toward the LTCA is ensured by hiding the final public keys
to certify from the LTCA.

3.3.4.2 Response format

The ITS-S shall receive a Data structure, containing an encryptednata structure, containing
a signedpata Structure, containing an 1nneratresponse Structure. In some specific error
cases, the encryptednata structure can be missing, for example if the PCA hasn't been able
to read or validate the responseEncryptionkey in the request.
« if the PCA has been able to read and validate the responseEncryptionkey in the request:
_ the outermost structure is a Data structure with itS contentType Set tO id-1Ts-ISE-ct-
EncryptedData
- the content octet string contains an encryptednata Structure, with:
= recipients references the responseencryptionkey Set in the request, the recipient
identifier is computed as described in section encryptedpata
= the encryptedContentType is set to id-17s-15E-ct-5] gnedData
" the encryptedcontent, ONce decrypted, contains a signedpata structure
« ifthe PCA hasn't been able to read and validate the responseEncryptionkey in the request:
- the outermost structure is a Data structure with itS contentType Set t0 id-1TS-1SE-ct-
SignedData
- the content contains a signedpata Structure

In both cases, this expected signedpata Structure is:

e the signedcontentType IS S€t 10 id-I1TS-ISE-ct-AuthorizationResponse

« the signedContent contains the InnerATResponse

« the signer is populated with the certificatenigest field, containing the Hashedld8 of the
PCA

« the signature is computed using the PCA private key corresponding to its public
verification key found in the PCA certificate

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 31/53

Projet
&® ScooP

2.4.4.6_PKIl architecture and technical specifications

The InnerATResponse shall contain:

e the requestnash is the left-most 16 octets of the SHA256 digest of the Data structure
received in the request

e a responseCode indicating the result of the request

e if responsecode is 0, indicating a positive response, then subjectassurance, startbate and
endbate are returned to be set in corresponding PC

o if responsecode IS different than O, indicating a negative response, then no
subjectAssurance, NO startDate, and no endpate are returned

InnerATResponse ::= SEQUENCE ({

requestHash OCTET STRING (SIZE(l6)),

responseCode AuthorizationResponseCode,

certificate Certificate OPTIONAL,

cAContributionValue INTEGER OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationResponseCode ::= ENUMERATED ({

ok (0), -- ITS->AA

its-aa-cantparse, -- valid for any structure

its-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest
its-aa-imnottherecipient, -- the "recipients" doesn't include me
its-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
its-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM
its-aa-keysdontmatch, -- HMAC keyTag verification fails

its-aa-incompleterequest, -- some elements are missing
its-aa-invalidencryptionkey, -- the responseEncryptionKey is bad
its-aa-outofsyncrequest, -- signingTime is outside acceptable limits
its-aa-unknownea, -- the EA identified by eald is unknown to me

its-aa-invalidea, -- the EA certificate is revoked

its-aa-deniedpermissions, -- I, the AA, deny the requested permissions -- AA->EA
aa-ea-cantreachea, -- the EA is unreachable (network error?) -—- EA->AA
ea-aa-cantparse, -- valid for any structure

ea-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest
ea-aa-imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't

include me

ea-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
ea-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM -- TODO: continuer
invalidaa, -- the AA certificate presented is invalid/revoked/whatever
invalidaasignature, -- the AA certificate presented can't validate the request

signature

wrongea, -- the encrypted signature doesn't designate me as the EA
unknownits, -- can't retrieve the EC/ITS in my DB

invalidsignature, -- signature verification of the request by the EC fails
invalidencryptionkey, -- signature is good, but the key is bad
deniedpermissions, -- permissions not granted

deniedtoomanycerts, -- parallel limit

}

Security characteristics

« lIdentity is ensured by the signer identifier of the signedpata Structure (contains the
Hashedld8 of the PCA’s certificate).

« Integrity is ensured by the signature and verified by checking the signature against the
verification key Of the PCA.

« Confidentiality is ensured by encrypting the response to the responseEncryptionkey
provided in the request. If this key wasn't valid, confidentiality isn't ensured, but no
personal information is returned.

« Anonymity of the requestor toward an external attacker is ensured by the absence of
identifiable information returned when no encryption is possible, and by encryption of
the response when possible.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 32/53

(e Projet | o
O @ Spqop 2.4.4.6_PKI architecture and technical specifications

POST http://ea_access_point

Inputs:

e Content-type: application/x-its-request
e Content: binary encoded aAuthorizationvalidationRequest Object

Outputs:

e Content-type: application/x-its-response
e Content: binary encoded AuthorizationvValidationResponse object

3.3.5.1 Request format

The PCA must build its permissions verification request by following this process:

an ECC private key is randomly generated (the response-decryption-key), the
corresponding public key is computed (response-encryption-key)
an authorizationvalidationRequest Structure is built, with:

a randomly generated requestIdentifier

the sharedaTrequest containing the signedryec submitted in the pseudonym certificate
request

the detachedEncryptedsignature SUbmitted in the same pseudonym certificate request

the responseEncryptionKey

a signedbata Structure is built, with:

the signedContentType S€t t0 id-ITS-ISE-ct-AuthorizationValidationRequest
the signedContent Containing the AuthorizationvValidationRequest

the signedattributes collection containing an attr-signingrime attribute
the signer declared as certificate and contains the PCA certificate

the signature is computed using the PCA signature private key

an Encryptedbata Structure is built, with:

the recipient is the LTCA, the recipient’s public key to use is the encryption key Of the
LTCA

the encryptedContentType S€t {0 id-ITS-ISE-ct-SignedData

the encryptedcontent containing the encrypted representation of the signedpata
structure

a Data structure is built, with:

the contentType S€t 10 id-ITS-ISE-ct-EncryptedData
the content containing the encryptednata Structure

AuthorizationValidationRequest ::= SEQUENCE {

requestIdentifier OCTET STRING (SIZE(1l6)),
sharedATRequest SharedATRequest,
detachedEncryptedSignature EncryptedData,
responseEncryptionKey PublicKey }

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 33/53

@) Projet R
§gg% 2.4.4.6_PKIl architecture and technical specifications

The figure 4 illustrates the structure of PC validation request.

Encrypted Data to EA

Signed Data with AA private key

Request Identifier

Response Encryption Key

Shared AT Request

Request Identifier
EA Identifier
Key Tag

Validity Restrictions
Subject Attributes
Response Encryption Key

Signed by EC

Encrypted Data to EA

Signature = ECidentifier

Figure 4: The structure of PC validation request

Security characteristics

« Identity is ensured by the PCA certificate used as the signer identifier in the signerinfo
structure.

« Integrity is ensured by the signature and verified by checking the signature against the
verification public key assessed in this certificate. The validity of the requestor PCA is
verified by chaining the certificate to a trusted root.

« Confidentiality is ensured by encrypting the request with the encryption public key of the
LTCA certificate.

« Anonymity of the ITS-S toward an external attacker is ensured by the confidentiality of
the request.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 34/53

55) Projet
O @ quog 2.4.4.6_PKIl architecture and technical specifications

3.3.5.2 Response format

The PCA shall receive a Data structure, containing an encryptednata structure, containing
a signedbata Structure, containing an authorizationvalidationResponse Structure. In some
specific error cases, the encryptedpata Structure can be missing, for example if the LTCA
hasn't been able to read or validate the responseEncryptionkey in the request.

« ifthe LTCA has been able to read and validate the responseEncryptionkey in the request:
- the outermost structure is a Data structure with itS contentType S€t t0 id-1TS-1SE-ct-
EncryptedData
- the content octet string contains an encryptednata Structure, with:
" recipients references the responseEncryptionKey Set in the request, the recipient
identifier is computed as described in section encryptedpata
= the encryptedContentType is set to id-ITS-ISE-ct-SignedData
» the encryptedcontent, ONce decrypted, contains a signedpata Structure
« ifthe LTCA is not able to read and to validate the responseEncryptionkey In the request:
- the outermost structure is a Data structure with itS contentType S€t t0 id-1TS-1SE-ct-

SignedData
_ the content contains a signedpata Structure

In both cases, the expected signedpata structure is:

« the signedContentType is set to id-ITS-ISE-ct-AuthorizationValidationResponse

« the signedContent contains the AuthorizationValidationResponse

« the signer is populated with the certificatenigest field, containing the Hashedld8 of the
LTCA certificate.

« the signature is computed using the LTCA private key corresponding to its public
verification key found in the LTCA certificate

The InnerATResponse shall contain:

o the requestnasn is the left-most 16 octets of the SHA256 digest of the Data structure
received in the request
e a responseCode indicating the result of the request

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 35/53

@ @ Scoop 2.4.4.6_PKIl architecture and technical specifications

AuthorizationValidationResponse ::= SEQUENCE {
requestHash OCTET STRING (SIZE(16)),
responseCode AuthorizationValidationResponseCode,
subjectAssurance SubjectAssurance OPTIONAL,
startDate [0] Time32 OPTIONAL,
endDate [1] Time32 OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationValidationResponseCode ::= ENUMERATED {

ok (0),

cantparse, -- valid for any structure

badcontenttype, -- not encrypted, not signed, not permissionsverificationrequest

imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't
include me

unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

decryptionfailed, -- works for ECIES-HMAC and AES-CCM

invalidaa, -- the AA certificate presented is invalid/revoked/whatever

invalidaasignature, -- the AA certificate presented can't validate the request
signature

wrongea, -- the encrypted signature doesn't designate me as the EA

unknownits, -- can't retrieve the EC/ITS in my DB

invalidsignature, -- signature verification of the request by the EC fails

invalidencryptionkey, —-- signature is good, but the responseEncryptionKey is bad

deniedpermissions, -- requested permissions not granted

deniedtoomanycerts, -- parallel limit

deniedrequest, -- any other reason?

}

Security characteristics

« Identity is ensured by the signer identifier of the signedpata Structure (contains the
HashedId8 of the LTCA).

« Integrity is ensured by the signature and verified by checking the signature against the
verification key Of the LTCA certificate.

« Confidentiality is ensured by encrypting the response with the responseEncryptionkey
provided in the request. If this key wasn't valid, confidentiality isn't ensured, but no
personal information is returned.

« Anonymity of the ITS-S requesting a pseudonym certificate toward an external attacker
is ensured by the absence of identifiable information returned when no encryption is
possible, and by encryption of the response when possible.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 36/53

55) Projet
@ @ quog 2.4.4.6_PKIl architecture and technical specifications

GET http://dc_access_point/getcrl/HashedId8

The abs_path part of the HTTP request is built by taking the DC access point (from the TSL or from an
ad-hoc configuration), appending “/getcrl/”, and the uppercase hexadecimal representation of
HashedlIdS.

Inputs:

e No inputs

Outputs:

e Content-type: application/x-its-crl

e Content: binary encoded CRL object issued by the entity identified byHashedId8

The format of CRL is described in section 3.2.6.

GET http://dc_access_point/gettsl/HashedId8

The abs_path part of the HTTP request is built by taking the DC access point (from the TSL or from an
ad-hoc configuration), appending “/gettsl/”, and the uppercase hexadecimal representation of
HashedIdS.

Inputs:

e No inputs

Outputs:

e Content-type: application/x-its-tsl

e Content: binary encoded TSL object issued by the entity identified by HashedId8

The format of TSL is described in section 3.2.7.

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 37/53

@ Projet | o
G@ SFQOR 2.4.4.6_PKIl architecture and technical specifications

4. Appendix A: Examples of request

The ITS-S whose canonical ID "Renault-123456" requests an LTC usable for CAM and
DENM with some permissions, and no validity restriction. The tnnerecrequest content is:

innerecreq InnerECRequest ::= ({
requestIdentifier 'E665759B9756D789FCCB1B2577E46A66"'H,
itsId "Renault-123456",
wantedSubjectAttributes '30
000002D50E7AL16DEF1FS5E2FB22F85ED8FC4AE9F8D22404061EE6F22290280807CC223F2

21092403010000250401000000'H, -- a verification key and 2 ITSAIDSSP (CAM&DENM)
responseEncryptionKey {

type compressed-lsb-y-0,

x "77BCBC87A68ECFE8CD7DD6CDC0320A9806996CF5A08D72C3226450E68BF33BD0"H
}

}

The DER encoding of this innerecreq is the following octet stream, 126 octets long, here
beautified for readability:

30 7C -- InnerECRequest
04 10 E665759B9756D789FCCB1B2577E46A66 -- requestldentifier
16 OE 52656E61756C742D313233343536 -- itsId
04 31

30000002D50E7A16DEF1F5E2FB22F85EDSFC4E9F8D22404061EE6F22290280807CC223F221092403010000250401000
000 -- wantedSubjectAttributes

30 25 -- responseEncryptionKey
0A 01 02 -- type
02 20 77BCBC87A68ECFE8CD7DD6CDC0320A9806996CF5A08D72C3226450E68BF33BD0 —- x

This PDU is then encapsulated in a signedpata structure:

signedreq SignedData ::= {
version vl,
hashAlgorithms {
{ algorithm id-sha256 }
I
signedContentType id-ITS-ISE-ct-EnrolmentRequest,

signedContent '... here goes the innerecreq ...'H,
signerInfos {

{
version vl,
signer self:NULL,
digestAlgorithm { algorithm id-sha256 },
signatureAlgorithm { algorithm ecdsa-with-SHA256 },
signedAttributes {
{
attrType id-messageDigest,
attrValue OCTET STRING ::=
'AA349D9F1817AF5C662B04250427B3E2D07A027FD8AEAT70114783661EASDB11D'H —- SHA256 digest value of
innerecreq

by
{

attrType id-contentType,
attrValue OBJECT IDENTIFIER ::= i1id-ITS-ISE-ct-EnrolmentRequest
s
{
attrType id-signingTime,
attrValue INTEGER ::= 1426674524 -- 18 march 2015 10:28:44 UTC
}
br
-- no certificateChain

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 38/53

()5 Projet | o
O@ Spoop 2.4.4.6_PKIl architecture and technical specifications

signature
'304502206982D1E49CAOOBCESFODB81FDFECO6FE3AAC4915394FATF171AEDO76E443C655022100DF88B8CO8F5FA3BS
7DEA4D66ASDBEDEF378CC7500D9F2DC13AC50BA0DAADCEF10"H
}
}
}

The DER encoding of this signedreq is the following octet stream, 344 octets long:

30 82 0154 -- SignedData
30 0D -- hashAlgorithms
30 0B -- HashAlgorithmIdentifier
06 09 608648016503040201 -- id-sha256
06 0C 2B0601040181AD5A04010104 -- id-ITS-ISE-ct-EnrolmentRequest
04 7E <...insert here the innerecreq...>
30 81 B4 -- SignerInfos
30 81 Bl -- SignerInfo
30 66 -- signedAttributes
30 30
06 0C 2B0601040181AD5A04010301 -- id-messageDigest
04 20 AA349D9F1817AF5C662B04250427B3E2D07A027FD8AEAT70114783661EASDB11D
30 1cC
06 0C 2B0601040181AD5A04010302 -- id-ContentType
06 0C 2B0601040181AD5A04010104
30 14
06 0C 2B0601040181AD5A04010303 -- id-signingTime
02 04 5509535C
04 47
304502206982D1E49CAOOBCESFI9DB81FDFECO6FE3AAC4915394FA7F171AEDO76E443C655022100DF88B8CO8F5FA3BS7
DEA4D66A5DBEDEF378CC7500D9F2DC13AC50BA0DAADCE10 —- signature

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI
TS103097 parameters (this produces a 360 octets long octet string), and the AES key is
encrypted using ECIES mechanism with default ETSI TS103097 parameters to the LTCA
identified by its Hashedld8='0001020304050607'H. The resulting EncryptedData structure
is built like this:

encryptedreq EncryptedData ::= {
version vl,
recipients {
{
recipient '0001020304050607'H,
kexalgid { algorithm id-ecies-103097 },
encryptedKeyMaterial
'304C30260A0103022100ABC4563E98E4395FC2D968E2ADA4A310D49D5D9E4C929ECIFSEDF13F6D8797CC04107F64B4
47AF6913833C1C5F5BF60131930410E93749FF54892F24533A1EE746EF23C2'H —- contains an
ECIESEncryptedKeyl03097
}
by
encryptedContentType i1id-ITS-ISE-ct-SignedData,
contentEncryptionAlgorithm {
algorithm aes-128-ccm-103097,
parameters { aes-nonce '000102030405060708090A0BOC'H }
by
encryptedContent '... here goes the encrypted signedreq ...'H
}

The DER encoding of this encryptedreq is the following octet stream, 507 octets long:

30 82 01F7 -- EncryptedData
30 5C -- recipients
30 5A -- RecipientInfo
04 08 0001020304050607 —--recipient
04 4E
304C30260A0103022100ABC4563E98E4395FC2D968E2ADA4A310D49D5D9E4C929ECIFS5EDF13F6D8797CC04107F64B44
TAF6913833C1C5F5BF60131930410E93749FF54892F24533A1EE746EF23C2 —- encryptedKeyMaterial
06 0C 2B0601040181AD5A04010102 -- id-ITS-ISE-ct-SignedData
30 1D -- encryptionAlgorithm
06 0C 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 39/53

@ Projet | o
G@ SFQOR 2.4.4.6_PKIl architecture and technical specifications

04 0D 000102030405060708090A0BOC -- aes-nonce
04 82 0168 <...insert here the encrypted signedreq...>

This PDU is then encapsulated in a Data structure, built like this:

enrolmentrequest Data ::= {
version vl,
contentType i1id-ITS-ISE-ct-EncryptedData,
content '... here goes the encryptedrec ...'H

}
The DER encoding of this enroimentrequest is the following octet stream, 529 octets long:

30 82 020B -- Data
06 0C 2B0601040181AD5A04010103 -- 1d-ITS-ISE-ct-EncryptedData
04 82 01FB <...insert here the encryptedreqg...>

An ITS-S requests an PC usable for CAM and DENM with some permission, no encryption
key, and no validity restrictions. First, @ sharedatrequest is built:

sharedatreq SharedATRequest ::= {
requestIdentifier '41E33B6C090187D2BAEOA4E8CS5A7T7DC4'H,
eald '0001020304050607'H, -- the EA
keyTag 'FASBECEAAOE6ESB6088DES2EDADGEF18F'H,
wantedSubjectAttributes '0D21092403010000250401000000'H, -- 2 ITSAIDSSP (CAM&DENM)
-- no wantedValidityRestrictions
wantedStart 1426723200, -- 19 march 2015 00:00:00 UTC
responseEncryptionKey {
type compressed-lsb-y-1,
x 'F302F81307B7CAO056023EA959EABO32D043AAT7C86ACACBAECESESFSFDC35AE4F 'H
}
}

The DER encoding of this sharedatreq is the following octet stream, 110 octets long:

30 6C -- SharedATRequest
04 10 41E33B6C090187D2BAEOA4E8C5A77DC4 -- requestlIdentifier
04 08 0001020304050607 -- eald
04 10 FASBECEAAQOEG6E5B6088DES2EDADGF18F -- keyTag
04 OE 0D21092403010000250401000000 -- wantedSubjectAttributes
02 04 550A1180 -- wantedStart
30 26 -- responseEncryptionKey
0OA 01 03 -- type
02 21 OOF302F81307B7CA056023EA959EAB932D043AATC86ACAGBAECESESF5FDC35AE4F —- x

This sharedatreq Needs to be signed, so a signedpata structure is built:

signedextsharedatreqg SignedData ::= {
version vl,
hashAlgorithms {
{ algorithm id-sha256 }
bo
signedContentType id-ITS-ISE-ct-SharedATRequest,
-- no signedContent, this is an external signature
signerInfos {
{
version vl,
signer certificateDigest ({
algorithm { algorithm id-sha256 },
digest '97583D6CELC46B5E'H —- this is the HashedId8 of the EC
}y
digestAlgorithm { algorithm id-sha256 },
signatureAlgorithm { algorithm ecdsa-with-SHA256 },
signedAttributes {
{
attrType id-messageDigest,

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 40/ 53

()5 Projet | o
O@ Spoop 2.4.4.6_PKIl architecture and technical specifications

attrValue OCTET STRING ::=
'01E10ED2BD3EOFFB451FD64036ED12A1B5942F78365CF39D5F22C9A3DF3F697A'H —— SHA256 digest value of
sharedatreq
I
{
attrType id-contentType,
attrValue OBJECT IDENTIFIER ::= id-ITS-ISE-ct-SharedATRequest
I
{
attrType id-signingTime,
attrValue INTEGER ::= 1426674528 -- 18 march 2015 10:28:48 UTC
}
by
-- no certificateChain
signature
'304402201C1B4CCAT76525F1830A22E7E6BSF6ABEAABC72BOECACL75CEF6601CA35726AFD02205931C93E92E0D58BC6
B43EBFE75F29B1BDD4289EBEBE3467F2D640F800CC6234'H
}
}
}

The DER encoding of this signedextsharedatreq is the following octet stream, 226 octets

long:
30 81 DF -- SignedData
30 0D -- hashAlgorithms
30 0B -- HashAlgorithmIdentifier
06 09 608648016503040201 -- id-sha256
06 0C 2B0601040181AD5A0401010A
30 81 BF -- signerInfos
30 81 BC -- SignerInfo
30 OA -- signer
04 08 97583D6CE5C46B5SE -- digest of EC
30 66 —-- signedAttributes
30 30
06 0C 2B0601040181AD5A04010301 -- id-messageDigest
04 20 OlE1OED2BD3EOFFB451FD64036ED12A1B5942F78365CF39D5F22C9A3DF3F697A
30 1C
06 0C 2B0601040181AD5A04010302 -- id-ContentType
06 0C 2B0601040181AD5A0401010A
30 14
06 0C 2B0601040181AD5A04010303 -- id-signingTime
02 04 55095360
04 46
304402201C1B4CCAT6525F1830A22E7E6BSF6ABEAABCT72BOECACL75CEF6601CA35726AFD02205931C93E92E0D58BC6B
43EBFE75F29B1BDD4289EBESE3467F2D640F800CC6234 -- signature

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI
TS103097 parameters (this produces a 242 octets long octet string), and the AES key is
encrypted using ECIES mechanism with default ETSI TS103097 parameters to the LTCA

identified by its Hashedld8='"0001020304050607'H. The resulting EncryptedData structure
is built like this:

encryptedsignedextsharedatreq EncryptedData ::= ({
version vl,
recipients {
{
recipient '0001020304050607'H,
kexalgid { algorithm id-ecies-103097 },
encryptedKeyMaterial
'304C30260A01030221008FE956196A3F36BD514AD219CAC462DC13B1F99C98BEAF8CDE6C64269A55DA6C04108B5B8E
36EAB36577F0B76270C45D1D8204103E05A6E942F0BEE2AL12779BEBAT7577EL'H —— contains an
ECIESEncryptedKeyl103097
}
by
encryptedContentType id-ITS-ISE-ct-SignedData,
contentEncryptionAlgorithm {
algorithm aes-128-ccm-103097,

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 41 /53

()5 Projet | o
@@ Spoop 2.4.4.6_PKIl architecture and technical specifications

parameters { aes-nonce '000102030405060708090A0BOD'H }

b
encryptedContent '... here goes the encrypted signedextsharedatreq ...'H

}
The DER encoding of this encryptedsignedextsharedatreq is the fO”OWing octet Stream, 372

octets long:
30 82 0170 -- EncryptedData
30 5C -- recipients
30 5A -- RecipientInfo
04 08 0001020304050607 —--recipient
04 4E
304C30260A01030221008FE956196A3F36BD514AD219CAC462DC13B1F99C98BEAFS8CDE6C64269A55DA6C04108B5B8E3
6EAB36577F0B76270C45D1D8204103E05A6E942F0BEE2AL12779BEBAT577E1 —- encryptedKeyMaterial
06 0C 2B0601040181AD5A04010102 -- id-ITS-ISE-ct-SignedData
30 1D -- encryptionAlgorithm
06 0C 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097

04 0D 000102030405060708090A0BOD -- aes-nonce
04 81 E2 <...insert here the encrypted signedextsharedatreq...>

The sharedatreq, the encryptedsignedextsharedatreq, pUb|IC keys, and HMAC key are then
encapsulated in an rnneraTrRequest:

inneratreq InnerATRequest ::= ({
verificationKey {
type compressed-lsb-y-1,
x 'AOOSA3032AF6EODCOOBF70A9E36C84275A1CA8087A12245A7TEBSDE2B2C805166'H
by
-- no encryptionKey
hmacKey '60B316FD92AB81B793D5207F11AE34CF5AF6BA425A0B8395E2371DEBS5479D3A2'H,
signedByEC '... here goes the sharedatreq ...',
detachedEncryptedSignature '... here goes the encryptedsignedextsharedatreq ...'

}
The DER encoding of this inneratreq is the following octet stream, 560 octets long:

30 82 022C -- InnerATRequest
30 26 —-- verificationKey
0OA 01 03 -- type

02 21 AO09A3032AF6EI9DCOOBEF70RA9E36C84275A1CA8087A12245A7EBS5DE2B2C805166 —- x
-- no encryptionKey
04 20 60B316FD92AB81B793D5207F11AE34CF5AF6BA425A0B8395E2371DEBS5479D3A2 ~- hmacKey
30 6C <...insert here the rest of the sharedatreq...>
30 82 0170 <...insert here the rest of the encryptedsignedextsharedatreq...>

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI
TS103097 parameters (this produces a 576 octets long octet string), and the AES key is
encrypted using ECIES mechanism with default ETSI TS103097 parameters to the PCA
identified by its Hashed|d8='"08090A0BOCODOEOF'H. The resulting encryptedpata structure
is built like this:

encryptedreq EncryptedData ::= {
version vl,
recipients {
{
recipient '08090A0BOCODOEOF'H,
kexalgid { algorithm id-ecies-103097 },

encryptedKeyMaterial
'304B30250A01030220214A61E116D709ABB38E211253A55BC66110C713C1253799AA1981A015A158060410E5A48762
5B458D28C96782E5FDB378A90410A3956CDOBA50F814F8BB6B6BABCCS5ELF'H —— contains an

ECIESEncryptedKeyl103097
}
by
encryptedContentType id-ITS-ISE-ct-AuthorizationRequest,
contentEncryptionAlgorithm {
algorithm aes-128-ccm-103097,
parameters { aes-nonce '000102030405060708090A0BOE'H }

1y
encryptedContent '... here goes the encrypted inneratreq ...'H

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 42 /53

@) Projet | -
quog 2.4.4.6_PKIl architecture and technical specifications

}
The DER encoding of this encryptedreq is the following octet stream, 722 octets long:

30 82 02CE -- EncryptedData
30 5B -- recipients
30 59 -- RecipientInfo
04 08 08090A0BOCODOEOF --recipient
04 4D
304B30250A01030220214A61E116D709ABB38E211253A55BC66110C713C1253799AA1981A015A158060410E5A487625
B458D28C96782E5FDB378A90410A3956CD0OBAS50F814F8BB6B6B4BCCSELEF ——- encryptedKeyMaterial
06 0C 2B0601040181AD5A04010106 —-- id-ITS-ISE-ct-AuthorizationRequest
30 1D -- encryptionAlgorithm
06 0C 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097

04 0D 000102030405060708090A0BOE -- aes-nonce
04 82 0240 <...insert here the encrypted inneratreq...>

This PDU is then encapsulated in a Data structure, built like this:

authorizationrequest Data ::= {
version vl,
contentType id-ITS-ISE-ct-EncryptedData,
content '... here goes the encryptedrec ...'H

}
The DER encoding of this authorizationrequest is the following octet stream, 744 octets

long:
30 82 02E4 -- Data
06 0C 2B0601040181AD5A04010103 -- i1id-ITS-ISE-ct-EncryptedData

04 82 02D2 <...insert here the encryptedreqg...>

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 43 /53

Projet

O @ Scoop 2.4.4.6_PKI architecture and technical specifications

S.

Appendix B: Encryption of a message

This appendix describes cryptographic operations to be implemented to encrypt a
message (any) according to the mechanisms used in ETSI Standards [1]. Message
encryption is used for example to communicate between ITS-S and the PKI (LTCA/PCA),
and between the PCA and LTCA entities of the PKI.

Encrypt a message m (N octets) from a sender to a receiver.

Assuming an elliptic curve (p: curve prime, G: base point, g: base point order).
Sender only knows the (certified) encryption public key “Kb” of the receiver.

KDF (): SHA256(S | | counter)...
E(a, b):axorb

E-1(a, b): axorb

MAC (km, m): HMAC (km, m)

| |: concatenation

Sender generates a random AES key A (128 bits, 16 octets)

Sender chooses a nonce n, 12 octets

Sender encrypts the message m with AES-CCM mode, the key A, and the nonce n. The
output is the encrypted message M with an authentication tag (N+16 octets).

Sender generates an ephemeral private key rin [1, g-1], and the associated public key
v=r.G, 33 octets if compressed

Sender derives a shared secret S from receiver encryption public key (Kb): S=Px, with
(Px, Py)=r.Kb (verify that P != 0,if not, back to previous step)

Sender then derives a set of keys ke and km with derivation algorithm: (ke ||
km)=KDF(S), ke is 16 octets long, km is 32 octets long

Sender encrypts the AES key: c=E(ke, A), c is 16 octets long

Sender produces a tag on the encrypted message: t=MAC(km, c), tis 16 octets long
Sender transmits to the receiver a message C containing:

The identifier for the recipient's certificate (cert_id), 8 octets

The encrypted message M

The encryption parameters (algorithm identifier aes_128 ccm, nonce n), 13 octets

The ephemeral public key (v)

The encrypted key (c) with the associated tag (t)

- 8+N+16+13+33+16+16: 102+N octets, plus protocol overheads.

Receiver has its private key kb, and receives the message C.

Receiver derives a shared secret S=Px, with (Px, Py)=kb.v

Receiver derives (ke || km)=KDF(S)

Receiver checks that the tag t verifies MAC(km, c), if not, receiver returns an error
message

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 44 /53

)G Projet

Scow 2.4.4.6_PKIl architecture and technical specifications

A A 9 M RN
—— ity P

6. Appendix C: ASN.1 module

ISEEnrolmentProtocolvl
{ iso(1) identified-organization(3) dod(6) internet (1) private (4)
enterprise (1) opentrust (22234) innovation(4) ise(l) modules (0)
iseenrolmentprotocolvl (0) }

-- version BIT STRING { v1990(0), v1994 (1), v1997(2) } ::= v1997

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

—-— EXPORTS AIll

-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them for
-- their own purposes.

IMPORTS
-- RFC5084 Appendix
aes, 1id-aesl28-CCM, id-aes256-CCM, AES-CCM-ICVlen
FROM CMS-AES-CCM-and-AES-GCM
{ iso (1) member-body (2) us (840) rsadsi (113549) pkcs(1)
pkcs-9(9) smime (16) modules (0) cms-aes-ccm-and-gcm(32) }

-— RFC5480
ecdsa-with-SHA256, ecdsa-with-SHA384
FROM PKIX1Algorithms2008
{ iso(l) identified-organization(3) dod(6) internet (1)
security (5) mechanisms (5) pkix(7) id-mod(0) 45 }

—— RFC 4055 [RSAOAEP]
id-sha256, id-sha384
FROM PKIX1-PSS-OAEP-Algorithms
{ iso(l) identified-organization(3) dod(6) internet(1)
security (5) mechanisms (5) pkix(7) id-mod(0)
id-mod-pkixl-rsa-pkalgs(33) } 7

/************

== QIDg

************/

-—- For the ISE project, lets allocate 0OIDs under the OpenTrust arc

id-OpenTrust OBJECT IDENTIFIER ::= { iso(1l) identified-organization(3) dod(6) internet (1) private (4)
enterprise (1) opentrust (22234) }

id-OT-Innovation OBJECT IDENTIFIER ::= { id-OpenTrust 4 }

1d-0OT-Innovation-ISE OBJECT IDENTIFIER ::= { 1id-OT-Innovation 1 }

1d-ITS-ISE-ct OBJECT IDENTIFIER ::= { 1id-OT-Innovation-ISE 1 }

1d-ITS-ISE-ct-Data OBJECT IDENTIFIER ::= { 1id-ITS-ISE-ct 1 }

id-ITS-ISE-ct-SignedData OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 2 }
id-ITS-ISE-ct-EncryptedData OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 3 }
1d-ITS-ISE-ct-EnrolmentRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 4 }
1d-ITS-ISE-ct-EnrolmentResponse OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 5 }
1d-ITS-ISE-ct-AuthorizationRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 6 }
1d-ITS-ISE-ct-AuthorizationResponse OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 7 }
1d-ITS-ISE-ct-AuthorizationValidationRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 8 }
1d-ITS-ISE-ct-AuthorizationValidationResponse OBJECT IDENTIFIER ::= { 1id-ITS-ISE-ct 9 }
1d-ITS-ISE-ct-SharedATRequest OBJECT IDENTIFIER ::= { 1id-ITS-ISE-ct 10 }

1d-ITS-ISE-algos OBJECT IDENTIFIER ::= { id-OT-Innovation-ISE 2 }
id-aesl28-CCM-103097 OBJECT IDENTIFIER ::= { id-ITS-ISE-algos 1 }
id-ecies-103097 OBJECT IDENTIFIER ::= { id-ITS-ISE-algos 2 }

id-ITS-ISE-attrs OBJECT IDENTIFIER ::= { id-OT-Innovation-ISE 3 }
id-messageDigest OBJECT IDENTIFIER = { id-ITS-ISE-attrs 1 }
id-contentType OBJECT IDENTIFIER ::= { id-ITS-ISE-attrs 2 }
id-signingTime OBJECT IDENTIFIER ::= { 1id-ITS-ISE-attrs 3 }

-— From FIPS 202 draft

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 45/ 53

(#)G) Projet
GO0k

2.4.4.6_PKIl architecture and technical specifications

id-sha3-256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country (16) us(840) organization(l) gov(101)
csor (3) nistalgorithm(4) hashalgs (2) 8 }

/************

== WHLSE

************/

Version ::= INTEGER { v1(0), v2(1) }
HashedId8 ::= OCTET STRING (SIZE(8))
Time32 ::= INTEGER (0..4294967295)
SubjectAssurance ::= OCTET STRING (SIZE(1))
Certificate ::= OCTET STRING
SubjectAttributes ::= OCTET STRING
ValidityRestrictions ::= OCTET STRING
ContentType ::= OBJECT IDENTIFIER

PublicKey ::= SEQUENCE {
type ECCPublicKeyType,
x INTEGER }

ECCPublicKeyType ::= ENUMERATED f{
compressed-1sb-y-0(2),
compressed-1sb-y-1(3) }

SignatureValue ::= OCTET STRING

-- SignatureValue should be opaque to the user/caller of security functions.
-- Internally, an ECDSA signature contains the following structure:

Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER }

/************

-— A generic class for an algorithm
************/
ALGORITHM ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL
} WITH SYNTAX {
ID &id
[PARMS &Type]

/************

-- Signature algorithms declarations
************/

sign-ecdsa-with-sha256 ALGORITHM ::= {
ID ecdsa-with-SHA256 }
sign-ecdsa-with-sha384 ALGORITHM ::= {

ID ecdsa-with-SHA384 }

-— No OID defined yet
-- sign-ecdsa-with-sha3-256 ALGORITHM ::= {
== ID ecdsa-with-SHA3-256 }

SignatureFunctions ALGORITHM ::=
{ sign-ecdsa-with-sha256
| sign-ecdsa-with-sha384
-- | sign-ecdsa-with-sha3-256
oG

/************

-- Content encryption algorithm declarations
************/

CCMDefaultParameters ::= SEQUENCE {

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00

46 /53

)G Projet
3C00F

2.4.4.6_PKIl architecture and technical specifications

aes-nonce OCTET STRING (SIZE(12)) }

ce-aes-128-ccm-103097 ALGORITHM ::= {
ID id-aesl28-CCM-103097
PARMS CCMDefaultParameters }

CCMParameters ::= SEQUENCE {
aes-nonce OCTET STRING (SIZE(7..13)),
aes-ICVlen AES-CCM-ICVlen DEFAULT 12 }

ce-aes-128-ccm ALGORITHM ::= {
ID id-aesl28-CCM
PARMS CCMParameters }

ce-aes-256-ccm ALGORITHM ::= {
ID id-aes256-CCM
PARMS CCMParameters }

DataEncryptionFunctions ALGORITHM ::=
{ ce-aes-128-ccm-103097
| ce-aes-128-ccm
| ce-aes-256-ccm

7 coo J

/************

-- Key exchange algorithms declarations
************/

—-— ECIESParameters ::= SEQUENCE {

-—- kdf KeyDerivationFunction OPTIONAL,

-—- sym SymmetricEncryption OPTIONAL,

-- mac MessageAuthenticationCode OPTIONAL }

-— ke-ecies ALGORITHM ::= {
-— ID ecies-specifiedParameters
—-— PARMS ECIESParameters }

ECIESEncryptedKeyl103097 ::= SEQUENCE {
v PublicKey,
¢ OCTET STRING (SIZE(16)),
t OCTET STRING (SIZE(16)) }

ke-ecies-103097 ALGORITHM ::= {
ID id-ecies-103097 }

KeyEncryptionFunctions ALGORITHM ::=
{ ke-ecies-103097
-- | ke-ecies,

;7 ooo J

/************

-- Hash algorithms declarations
************/
hash-sha256 ALGORITHM ::= {

ID id-sha256 }

hash-sha384 ALGORITHM ::
ID id-sha384 }

I
~

hash-sha3-256 ALGORITHM ::
ID id-sha3-256 }

I
~

HashFunctions ALGORITHM ::=
{ hash-sha256
| hash-sha384
| hash-sha3-256
7 coo J

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00

47153

(#)G) Projet | -
Scow 2.4.4.6_PKIl architecture and technical specifications

A A 9 M RN
—— ity P

/************

-- AlgorithmIdentifiers using the preceding ObjectSets
************/
SignatureAlgorithmIdentifier ::= SEQUENCE {
algorithm ALGORITHM. &id({SignatureFunctions}),
parameters ALGORITHM. &Type ({SignatureFunctions}{@algorithm}) OPTIONAL }

ContentEncryptionAlgorithmIdentifier ::= SEQUENCE f{
algorithm ALGORITHM. &id({DataEncryptionFunctions}),
parameters ALGORITHM. &Type ({DataEncryptionFunctions}{@algorithm}) OPTIONAL }

HashAlgorithmIdentifier ::= SEQUENCE f{
algorithm ALGORITHM. &id({HashFunctions}),
parameters ALGORITHM. &Type ({HashFunctions}{@algorithm}) OPTIONAL }

KeyEncryptionAlgorithmIdentifier ::= SEQUENCE {
algorithm ALGORITHM. &id({KeyEncryptionFunctions}),
parameters ALGORITHM. &Type ({KeyEncryptionFunctions}{@algorithm}) OPTIONAL }

/************

-- Attributes
************/
ATTRIBUTE ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL
} WITH SYNTAX {
ID &id
[VALUE &Type]
}

attr-messageDigest ATTRIBUTE
ID id-messageDigest
VALUE OCTET STRING }

Il
~

attr-contentType ATTRIBUTE
ID id-contentType
VALUE ContentType }

attr-signingTime ATTRIBUTE
ID id-signingTime
VALUE Time32 }

1
~

SupportedAttributes ATTRIBUTE ::=
{ attr-messageDigest
| attr-contentType
| attr-signingTime

;o }
Attribute ::= SEQUENCE {

attrType ATTRIBUTE.&id({SupportedAttributes}),
attrValue ATTRIBUTE.&Type ({SupportedAttributes}{@attrType}) OPTIONAL }

/************

—-— Data
************/
Data ::= SEQUENCE {

version Version DEFAULT vi,
contentType ContentType,
content OCTET STRING OPTIONAL }

/************

-- SignedData

************/

SignedData ::= SEQUENCE {
version Version DEFAULT vi,
hashAlgorithms HashAlgorithmsIdentifiers,

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 48 /53

(#)G) Projet | -
Scow 2.4.4.6_PKIl architecture and technical specifications

A A 9 M RN
—— ity P

signedContentType ContentType,
signedContent OCTET STRING OPTIONAL,
signerInfos SignerInfos }

HashAlgorithmsIdentifiers ::= SEQUENCE OF HashAlgorithmIdentifier
SignerInfos ::= SEQUENCE OF SignerInfo
SignerInfo ::= SEQUENCE {

version Version DEFAULT vli,

signer [0] SignerIdentifier DEFAULT self:NULL,

digestAlgorithm [1] HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },
signatureAlgorithm [2] SignatureAlgorithmIdentifier DEFAULT { algorithm ecdsa-with-SHA256 },
signedAttributes SignedAttributes,

certificateChain SEQUENCE OF Certificate OPTIONAL,

signature SignatureValue }

SignerIdentifier ::= CHOICE {
self NULL,
certificateDigest CertificateDigest,
certificate Certificate }

CertificateDigest ::= SEQUENCE {
algorithm HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },
digest HashedId8 }

SignedAttributes ::= SEQUENCE OF Attribute

/************

-— EncryptedData
************/
EncryptedData ::= SEQUENCE {
version Version DEFAULT vi,
recipients RecipientInfos,
encryptedContentType ContentType,
encryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
encryptedContent OCTET STRING OPTIONAL }

RecipientInfos ::= SEQUENCE SIZE (1..MAX) OF RecipientInfo

RecipientInfo ::= SEQUENCE {
recipient HashedId$8,
kexalgid KeyEncryptionAlgorithmIdentifier DEFAULT { algorithm id-ecies-103097 },
encryptedKeyMaterial OCTET STRING }

/************

-- EnrolmentRequest/Response

************/

InnerECRequest ::= SEQUENCE {
requestIdentifier OCTET STRING (SIZE(16)),
itsId IA5String,
wantedSubjectAttributes SubjectAttributes,
wantedValidityRestrictions ValidityRestrictions OPTIONAL,
responseEncryptionKey PublicKey }

InnerECResponse ::= SEQUENCE {

requestHash OCTET STRING (SIZE(16)),

responseCode EnrolmentResponseCode,

certificate Certificate OPTIONAL,

cAContributionValue INTEGER OPTIONAL }
(WITH COMPONENTS { responseCode (ok), certificate PRESENT }

| WITH COMPONENTS { responseCode ALL EXCEPT (ok), certificate ABSENT, cAContributionValue ABSENT }

)

-—- requestHash is a truncated SHA256 of the whole Data structure received

EnrolmentResponseCode ::= ENUMERATED {
ok (0),
cantparse, —-- valid for any structure

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 49 /53

(W)G) Projet | o
sco 2.4.4.6_PKIl architecture and technical specifications

badcontenttype, -- not encrypted, not signed, not enrolmentrequest
imnottherecipient, -- the "recipients" doesn't include me
unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
decryptionfailed, -- works for ECIES-HMAC and AES-CCM

unknownits, —-- can't retrieve the ITS from the itsId

invalidsignature, -- signature verification of the request fails
invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad
baditsstatus, -- revoked, not yet active

incompleterequest, -- some elements are missing

deniedpermissions, —-- requested permissions are not granted

invalidkeys, -- either the verification key of the encryption key is bad
deniedrequest, -- any other reason?

}

/************

-— AuthorizationRequest/Response
************/
SharedATRequest ::= SEQUENCE {
requestIdentifier OCTET STRING (SIZE(16)),
eald HashedId§,
keyTag OCTET STRING (SIZE(16)),
wantedSubjectAttributes SubjectAttributes,
wantedValidityRestrictions ValidityRestrictions OPTIONAL,
wantedStart Time32,
responseEncryptionKey PublicKey }

InnerATRequest ::= SEQUENCE {
verificationKey PublicKey,
encryptionKey PublicKey OPTIONAL,
hmacKey OCTET STRING (SIZE(32)),
signedByEC SharedATRequest,
detachedEncryptedSignature EncryptedData }

InnerATResponse ::= SEQUENCE {

requestHash OCTET STRING (SIZE(16)),

responseCode AuthorizationResponseCode,

certificate Certificate OPTIONAL,

cAContributionValue INTEGER OPTIONAL }
(WITH COMPONENTS { responseCode (ok), certificate PRESENT }

| WITH COMPONENTS { responseCode ALL EXCEPT (ok), certificate ABSENT, cAContributionValue ABSENT }

)

-- requestHash 1s a truncated SHA256 of the whole Data structure received

AuthorizationResponseCode ::= ENUMERATED {
ok (0),
-— ITS->AA
its-aa-cantparse, -- valid for any structure
its-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest
its-aa-imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't include me
its-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
its-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM
its-aa-keysdontmatch, -- HMAC keyTag verification fails
its-aa-incompleterequest, -- some elements are missing
its-aa-invalidencryptionkey, —-- the responseEncryptionKey is bad
its-aa-outofsyncrequest, -- signingTime is outside acceptable limits
its-aa-unknownea, -- the EA identified by ealId is unknown to me
its-aa-invalidea, -- the EA certificate is revoked
its-aa-deniedpermissions, -- I, the AA, deny the requested permissions
-— AA->EA
aa-ea-cantreachea, —-- the EA is unreachable (network error?)
-— EA->AA
ea-aa-cantparse, -- valid for any structure
ea-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest
ea-aa-imnottherecipient, -- the '"recipients" of the outermost encrypted data doesn't include me
ea-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
ea-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM
-- TODO: continuer
invalidaa, —-- the AA certificate presented is invalid/revoked/whatever
invalidaasignature, -- the AA certificate presented can't validate the request signature

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 50/53

Scow 2.4.4.6_PKIl architecture and technical specifications

wrongea, -- the encrypted signature doesn't designate me as the EA
unknownits, -- can't retrieve the EC/ITS in my DB
invalidsignature, -- signature verification of the request by the EC fails
invalidencryptionkey, —-- signature is good, but the key is bad
deniedpermissions, —-- permissions not granted
deniedtoomanycerts, —-- parallel limit

}

/************

-- AuthorizationValidationRequest/Response

************/

AuthorizationValidationRequest ::= SEQUENCE {
requestIdentifier OCTET STRING (SIZE(16)),
sharedATRequest SharedATRequest,
detachedEncryptedSignature EncryptedData,
responseEncryptionKey PublicKey }

AuthorizationValidationResponse ::= SEQUENCE {

requestHash OCTET STRING (SIZE(16)),

responseCode AuthorizationValidationResponseCode,

subjectAssurance SubjectAssurance OPTIONAL,

startDate [0] Time32 OPTIONAL,

endDate [1] Time32 OPTIONAL }
(WITH COMPONENTS { responseCode (ok), subjectAssurance PRESENT }

| WITH COMPONENTS { responseCode ALL EXCEPT (ok), subjectAssurance ABSENT, startDate ABSENT,

endDate ABSENT }
)

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationValidationResponseCode ::= ENUMERATED {

ok (0),
cantparse, -- valid for any structure
badcontenttype, -- not encrypted, not signed, not permissionsverificationrequest
imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't include me
unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
decryptionfailed, -- works for ECIES-HMAC and AES-CCM
invalidaa, —-- the AA certificate presented is invalid/revoked/whatever
invalidaasignature, -- the AA certificate presented can't validate the request signature
wrongea, —-- the encrypted signature doesn't designate me as the EA
unknownits, -- can't retrieve the EC/ITS in my DB
invalidsignature, —-- signature verification of the request by the EC fails
invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad
deniedpermissions, —-- requested permissions not granted
deniedtoomanycerts, —-- parallel limit
deniedrequest, -- any other reason?

}

/************

-- Standalone certificate request (similar to PKCS#10)

************/

ITSCertificateRequest ::= SEQUENCE f{
itsCertReq ITSCertificateRequestContent,
signatureAlgorithm SignatureAlgorithmIdentifier DEFAULT { algorithm ecdsa-with-SHA256 },
signature SignatureValue }

ITSCertificateRequestContent ::= SEQUENCE {
version Version DEFAULT vl,
subjectName OCTET STRING (SIZE(0..32)),
subjectAttributes SubjectAttributes,
validityRestrictions ValidityRestrictions }

/************

-- CRL
************/
Crl ::= SEQUENCE {
unsignedCrl ToBeSignedCrl,
signatureAlgorithm SignatureAlgorithmIdentifier,

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 51/53

(#)G) Projet
20N

2.4.4.6_PKIl architecture and technical specifications

signature SignatureValue }
-- signature is applied on unsignedCrl

ToBeSignedCrl ::= SEQUENCE {
version Version,
signer SignerIdentifier,
thisUpdate Time3Z2,
nextUpdate Time32,
entries SEQUENCE OF HashedId8 }

/************

-- TSL

************/

Tsl ::= SEQUENCE {
unsignedTsl ToBeSignedTsl,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureValue }

-- signature is applied on unsignedTsl

ToBeSignedTsl ::= SEQUENCE f{
version Version,
signerInfo SignerIdentifier,
notBefore Time32,
notAfter Time32,
trustServices SEQUENCE OF TrustService }

TrustService ::= SEQUENCE {
servicelId TRUSTSERVICE.&id ({TrustServiceSet}),

serviceValue TRUSTSERVICE.&Value ({TrustServiceSet}{@servicelId}) }

TrustServiceSet TRUSTSERVICE ::=
{ ts-foreignRoot

| ts-renewedRoot

| ts-ea

| ts-aa

| ts-distributionCenter

| ts-otherTslPointer

;7 ooo J

TRUSTSERVICE ::= CLASS {
&id ServiceType UNIQUE,
&Value }

WITH SYNTAX {
SYNTAX &Value

ID &id }
ts-foreignRoot TRUSTSERVICE = {
SYNTAX Certificate
ID foreignRoot }
ts-renewedRoot TRUSTSERVICE = {

SYNTAX SEQUENCE {
rootCertificate Certificate,
linkRootCertificate Certificate }
ID renewedRoot }

ts—-ea TRUSTSERVICE ::= {
SYNTAX SEQUENCE {
certificate Certificate,
linkedCertificate Certificate OPTIONAL,
accessPoint IA5String }
ID ea }

ts—-aa TRUSTSERVICE ::= {

SYNTAX SEQUENCE {
certificate Certificate,
accessPoint IA5String }

ID aa }

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00

52/53

)G Projet

Scow 2.4.4.6_PKIl architecture and technical specifications

D

ts-distributionCenter TRUSTSERVICE ::= {
SYNTAX IA5String
ID distributionCenter }

ts—-otherTslPointer TRUSTSERVICE ::= {
SYNTAX IA5String
ID otherTslPointer }

ServiceType ::= ENUMERATED {
foreignRoot,
renewedRoot,
ea,
aa,
distributionCenter,
otherTslPointer,

}

END -- of ISEEnrolmentProtocolvl

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 53/53

