
The contents of this publication are the sole responsibility of the SCOOP@F project consortium and do not
necessarily reflect the opinion of the European Union.

PKI architecture and technical
specifications (v2)

Deliverable 2.4.4.6

Activity 2: Studies

Sub-activity 2.4 > Specifications

Version: 2.00

Publication date: 12/05/2017

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 2 / 53

Information on the document

To set out this deliverable, SCOOP Partner modified ISE project’s deliverable ISX-TEO-SE-ISE-LIV-
0061_0.10, in order to take into account the global PKI architeture choosen in SCOOP. This action has been
taken following SCOOP Studies SC in date of 08th April 2015.
Then, new modification were inserted in light of ISE Project’s new release ISX-TEO-SE-ISE-LIV-0061_1.1,
in date of date 15/07/15 (public release).

Document: PKI Architecture and technical specifications

Date of publication: 12/05/2017

Responsible, Entity: Houda LABIOD, Telecom ParisTech

Status: Version 2.00 – Approved

Publication history

Date Version Author(s) Updates & changes Diffusion

12/05/2017 2.00 TPT

H. Labiod

JP. Monteuuis

New deliverable Release 2

Reference to the version administration

Version number to be composed of 3 digits > vR.XY
- R corresponds to the release number : it is upgraded each time SC Studies validates the diffusion of a new release,
- X is the major version number: it is upgraded each time SC Studies validates the deliverable,
- Y is the minor version number: it is upgraded each time a contributor changes anything.
Once the deliverable is approved, its version number is upgraded from vR.XY to vR.(X+1)0
Once the deliverable is release, its version number is upgraded from vR.XY to v(R+1).00

As illustration :
 0.03 > Work in progress version
 0.10 > Del. Approved by SC Studies but not released
 2.00 > Del. approved & released (in release 2)
 2.05 > Del. Updated - in progress version

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 3 / 53

Table of Contents

1. Introduction .. 4

1.1 Objective .. 4

1.2 Typographic conventions .. 4

1.3 Definitions and abbreviations ... 4

1.4 References ... 5

2. System overview .. 7

2.1 High level architecture .. 7

2.2 Description of roles ... 8

2.3 Higher-layer supported protocols.. 8

3. PKI System .. 10

3.1 Functions .. 10

3.2 Data structures ... 17

3.3 PKI Requests.. 25

4. Appendix A: Examples of request .. 38

4.1 Long Term Certificate request example .. 38

4.2 Pseudonym Certificate request example .. 40

5. Appendix B: Encryption of a message ... 44

6. Appendix C: ASN.1 module ... 45

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 4 / 53

1. Introduction

1.1 Objective

This document is primarily written for the implementers. The document provides references
to the high-level PKI architecture and directs the reader to the detailed information cited in
the document [i.1].

1.2 Typographic conventions

The following typographic conventions are used in this document:

EX ::= SEQUENCE {} Code example
[1] Numbers in-between square brackets are references to publications mentioned in the
appendix References.

1.3 Definitions and abbreviations

For the purposes of the present document, the following definitions and abbreviations
apply:

Abbreviations Definitions

Access Point Access point is a HTTP URL used to access web
services of the PKI.

Anonymity Anonymity is the ability of a user to use a
resource or service without disclosing its identity.

Pseudonym Certificate Authority
(PCA)

Security management entity responsible for
issuing, monitoring the use of authorization
tickets.

Pseudonym Certificate (PC) Data object that demonstrates that the holder has
permissions which entitle him to take specific
actions.

Confidentiality Confidentiality is a set of rules or a promise that
limits access or places restrictions on certain
types of information.

Certificate Revocation List (CRL)

Certificate Revocation List is a list digitally signed
by a CA that contains certificates identities that
are no longer valid.

Distribution Center (DC) Distribution Center provides ITS-S the updated
trust information necessary for performing the
validation process to control that received
information is coming from a legitimate and
authorized ITS-S or PKI certification authority.

Integrity Integrity means maintaining and assuring the
accuracy and consistency of data over its entire
life-cycle.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 5 / 53

ITS Station (ITS-S): ITSS-V or ITSS-
R

ITS Station is end-user of the PKI system. The
PKI system provides it different certificates (LTC
or PC) to allow secure communications. ITS-S
can be normal vehicles, public safety vehicles,
roadside stations, nomadic devices and traffic
management centers…

Manufacturer Manufacturer installs necessary information for
security management in ITS-S at production.

Long Term Certificate Authority
(LTCA)

Security management entity responsible for the
life cycle management of long term certificate
(LTC).

Long Term Certificate (LTC) Data object that is used in message exchanges
between an ITS Station and a security
management entity and demonstrates that the
valid holder is entitled to apply for pseudonym
certificate.

Root CA (RCA) Root Certificate Authority is the root of trust for all
certificates within the PKI hierarchy. Root CA
issues certificates for EAs and PCAs to authorize
them to issue certificates to end-entities. It also
defines and controls policies among all certificate
issuers. The Root CA is required when a new
LTCA or PCA shall be created, or when the
lifetime of LTCA or PCA certificate expires.

Trust-service Status List (TSL) The Trust-service Status List is a signed list
which contains new RCA certificates, LTCA and
PCA certificates and PKI service addresses (PCA
and DC). This list is signed by the RCA and can
be transmitted over the air.

1.4 References

 Normative references

The following references documents are not essential to the use of the present document
but they assist the user with regard to a particular subject area.

[1] ETSI TS 103 097 (v1.2.1): ITS; Security; Security header and certificate formats

[2] ETSI TS 102 941 (v1.1.1): ITS; Security; Trust and Privacy Management

[3] X.680: Information Technology - Abstract Syntax Notation One (ASN.1): Specification
of basic notation

[4] X.690: Information Technology - ASN.1 encoding rules: Specifications of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding
Rules (DER)

[5] X.691: Information Technology - ASN.1 encoding rules: Specification of Packed

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 6 / 53

Encoding Rules (PER)

[6] RFC2616: HTTP/1.1

[7] NIST SP 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality

[8] ETSI EN 302637-2: ITS; Vehicular Communications; Basic Set of Applications; Part 2:
Specification of Cooperative Awareness Basic Service

[9] ETSI EN 302637-3: ITS; Vehicular Communications; Basic Set of Applications; Part 2:
Specifications of Decentralized Environmental Notification Basic Service

[10] ETSI TR 102 965: ITS; Application Object Identifier (ITS-AID); Registration list

[11] FIPS 198-1: The Keyed-Hash Message Authentication Code (HMAC)

 Informative references

The following references documents are not essential to the use of the present document
but they assist the user with regard to a particular subject area.

[i.1] PKI System Requirements Specifications (ISX-TEO-SE-ISE)- Deliverable 2.4.4-5

[i.2] RFC5246: The TLS Protocol version 1.2

[i.3] RFC5084: Using AES-CCM and AES-GCM Authenticated Encryption in the
Cryptographic Message Syntax (CMS)

[i.4] SEC 1: Elliptic Curve Cryptography version 2.0

[i.5] ETSI TS 102 860: Intelligent Transport Systems (ITS); Classification and management
of ITS application objects

[i.6] PKI architecture and technical specifications (v0.10) (ISX-TEO-SE-ISE)

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 7 / 53

2. System overview

2.1 High level architecture

This document describes the functionalities of the PKI system for ISE project.
The PKI system is divided into four entities:

 The Root Certificate Authority for the generation of CA private keys, a key step in the
initiation of a trust chain.

 Long Term Certificate Authority (LTCA), used by Manufacturer and ITS-S, respectively
for the ITS-S lifecycle management and for the provisioning of LTCAs.

 The Pseudonym Certificate Authority (PCA) used by ITS-S, for requesting PCs.
 The Distribution Center, used by ITS-S to retrieve CRL and TSL.

The PKI for ITS-S is a set of software modules enabling distribution of certificates for
secured communication between ITS-S.

Figure 1 shows the SCOOP-ISE PKI high level architecture.

Figure 1: PKI high level architecture

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 8 / 53

2.2 Description of roles

 Operator

The “operator” role is to install and update necessary information for security management
in ITS-S during operation.

 Manufacturer

The “manufacturer” role is to install necessary information for security management in ITS-
S at production. More precisely, the manufacturer bootstraps the process for manufacturing
a trusted ITS-S in production site, i.e. generates and stores securely required crypto-
material in its security module, initializes RCA and LTCA certificates and their associated
network addresses.

 ITS-Station

The “ITS-Station” role is to request certificates (LTCs and PCs) from the LTCA and PCA.
ITS Station only has access to the web service interface.

2.3 Higher-layer supported protocols

The hereafter described protocol tries to reach the following security objectives:

 Authentication/authorization control: authentication consists to be sure of the
identity which sends data. Authorization control is the verification of an access policy,
based on a trusted authentication. Authenticate all entities participating in the protocol
is required to prevent illegitimate persons to enter in the system, or to access some
unauthorized resources or services.

 Integrity: the integrity of all transmitted data is important to ensure that the contents of
the received data are not altered.

 Confidentiality/Privacy: data should only be accessed by authorized entities. The real
identity of ITS Station has to be protected, by cryptographic mechanisms and depending
on the type of data sent.

 Non-repudiation/Traceability: Non-repudiation is necessary to prevent ITS Station or
others entities from denying the transmission or the content of their messages.
Traceability, which is the warranty that an entity can’t refute the emission or reception
of information, is also extremely important.

 Unlinkability: ability of a user to make multiple uses of resources or services without
others being able to link these uses together.

 Anonymity: ability of a user to use a resource or service without disclosing the user's
identity.

To support security management of trusted ITS-S (vehicles, road-side or center stations),
an automatic communication means with the different PKI modules shall be provided by
the ITS-S embedded system. This section specifies the higher layers of the protocol stack
(see figure 2) and assumes either a fixed or cellular network with the ITS-S or an ITS G5
communication profile supporting IP connectivity.
Machine-to-machine communications with the LTCA, PCA, and DC components use
HTTP/1.1 as a transport mechanism, over TCP, over IP. No supplementary cryptographic

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 9 / 53

layer such as TLS is required.

Messages are sent as HTTP GET or POST requests. Parameters for the POST requests
and responses, and complete path for GET requests are described in the corresponding
messages descriptions.

The chosen encoding rules are ASN.1 DER (Distinguished Encoding Rules), defined in [4].

 Human-to-machine communications with the LTCA and PCA use HTTP/1.1 as a transport
mechanism, over TCP, over IP, with TLS. A web interface (used by operators and
manufacturers) is intended: this is out of scope of this document.

Figure 2: Higher-layer supported PKI protocols

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 10 / 53

3. PKI System

3.1 Functions

 Root Certificate Authority (RCA) component functions

The features of RCA component (see deliverable 2.4.4-5) are:

 Creation of RCA key pair and self-signed certificate;
 Issuance of CA (LTCA or PCA) certificates;
 Revocation of CA (LTCA or PCA) certificates;
 Generation of CA CRLs;
 Generation of a TSL.

3.1.1.1 Create a RCA certificate

Objective
Create a RCA certificate.

Input Data
The following information is provided:

 The assurance level
 The ITS AID list
 The validity restrictions

₋ The dates (time_start_and_end)
₋ The region (optional)

 The name of the Certificate Authority (optional)

Output Data
A RCA certificate is created. The format of this certificate is described in ETSI Standard,
see [1].

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 11 / 53

3.1.1.2 Create a LTCA certificate

Objective
Create a LTCA certificate.

Input Data
The following information is provided:

 The public keys (verification and encryption) to be signed.
 The ITS AID list in accordance with the ITS AID list of RCA.
 The assurance level.
 The validity restrictions

₋ The dates (time_start_and_end)
₋ The region in accordance with RCA’s region (if applicable)

 The name of the Certificate Authority (optional).

Output Data
An LTCA certificate is created. The format of this certificate is described in ETSI Standard,
see [1].

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

3.1.1.3 Create a PCA certificate

Objective
Create a PCA certificate.

Input Data
The following information is provided:

 The public key (verification key and encryption key) to signed
 The assurance level
 The ITS AID list in accordance with ITS AID list of the RCA
 The validity restrictions

₋ The dates (time_start_and_end)
₋ The region in accordance with RCA’s region (if applicable)

 The name of the Certificate Authority (optional)

Output Data
A PCA certificate is created. The format of this certificate is described in ETSI Standard,
see [1].

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 12 / 53

3.1.1.4 Revoke a CA certificate

Objective
Revoke a CA certificate (LTCA or PCA).

Input Data
The following information is provided:

 A LTCA or PCA certificate to be revoked

Output Data
A successful response is sent.

Traceability
The action is entered in the audit log.The action is viewable in the log from the operator
interface.

3.1.1.5 Generate a CA Certificate Revocation List (CRL)

Objective
Generate a CA Certificate Revocation List.

Input Data
The following information is provided:

 The List of revoked certificates

Output Data
The CA CRL is generated. The format of the CA CRL is described in 3.2.6.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

3.1.1.6 Generate Trust-service Status List (TSL)

Objective
Generate the Trust-service Status List.

Input Data
The following information is provided:

 CAs (RCA, LTCA, PCA) certificates
 PKI services addresses (RCA address, LTCA address, PCAs addresses and DC

address)

Output Data
The TSL is generated. The format of the TSL is described in 3.2.7.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 13 / 53

 Long Term Certificate Authority (LTCA) component functions

The features of LTCA component (described in the first deliverable “PKI System
Requirements Specifications”) are:

 Registration of ITS-S
 Management of ITS-S status
 Management of ITS-S permissions
 Issuance of Long Term Certificates
 Verification of ITS-S permissions for PC request

3.1.2.1 Register ITS Station
This feature is executed directly by the manufacturer through a graphical user interface
(GUI).

3.1.2.2 Change status of ITS Station
This feature is executed directly by the manufacturer or the operator through a graphical
user interface.

3.1.2.3 Change permissions of ITS Station
This feature is executed directly by the manufacturer through a graphical user interface.

3.1.2.4 Request a long-Term Certificate (LTC)

Role(s)
Only the ITS Station possessing the appropriate elements can perform this action.

Objective
An ITS Station requests a long-Term Certificate (LTC).

Input Data
ITS Station provides the following information:

 The canonical identifier of ITS Station called unique identifier is livrable 2.4.4-4v2
 The public key (verification key)
 The response decryption public key
 The ITS AID SSP List (see [8] and [9])
 The validity restrictions (optional)

₋ The date(s)
₋ The region

Output Data
LTCA returns a message containing:

 A LTC, the format of this certificate is described in ETSI Standard, see [1].
 A response code (see 3.3.3.2 for more information).

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 14 / 53

Possible errors
For each of the errors below, an error message is returned to ITS Station responsible for
the action.

 ITS Station fails to provide the required values in the request
 ITS Station is unknown (not registered)
 An internal error occurs
 Etc.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.
The traceability of this action is mandatory to lift the anonymity of ITS station.

3.1.2.5 Validate a Pseudonym Certificate (PC) request

Role(s)
Any PCA can perform this operation.

Objective
Validate a PC request before producing a PC to the relevant ITS-S.

Input Data
The PCA provides the following information as below to the LTCA for authenticating the
requesting ITS-S and checking its permissions to get requested Pseudonym Certificate:

 LTCA identifier
 Validity restrictions

₋ The date(s)
₋ The region (optional)

 Subject attributes
 Encrypted structure containing the signature and the LTC identifier

Output Data
LTCA returns a message containing:

 A response code (see 3.3.5.2 for more information).

Possible errors

 The ITS-S is not authorized to get pseudonym certificates
 The ITS-S is not managed by the LTCA
 Etc.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 15 / 53

 Pseudonym Certificate Authority (PCA) component functions

The features of PCA component (described in the first deliverable “PKI System
Requirements Specifications”) are:

 The issuance of Pseudonym Certificate.

3.1.3.1 Request pseudonym certificate(s) (PC)

Role(s)
Any ITS possessing an LTC can request a PC.

Objective
ITS station requests PC.

Input Data
ITS Station provides the following information:

 Verification public key(s)
 Encryption public key(s)
 LTCA identifier
 Validity restrictions

₋ The date(s)
₋ The region (optional)

 Subject attributes

Output Data
PCA returns a message containing:

 A PC, the format of this certificate is described in ETSI Standard, see [1].
 A response code (see 3.3.4.23.3.5.2 for more information).

Possible errors
For each of the errors below, an error message is returned to the ITS -S responsible for
the action, if:

 The ITS-S fails to provide the required values in the request;
 The LTCA cannot be reached;
 The LTCA is unable to verify permissions of relevant ITS Station (see Validate PC

request function);
 An internal error occurs;
 Etc.

Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.
The traceability of this action is mandatory to lift the anonymity of ITS station.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 16 / 53

 Distribution Center (DC) component functions

The features of DC (described in the first deliverable “PKI System Requirements
Specifications”) are:

 Publication of a TSL;
 Publication of CA CRLs.

3.1.4.1 Get CA Certificate Revocation List

Role(s)
Everybody can perform this operation.

Objective
Everybody retrieves an updated CRL.

Output Data
The DC provides the CRL. The format of this CRL is described in 3.2.6.

Possible errors
For each of the errors below, an error message is returned to the ITS Station responsible
for the action.

 An internal error occurs.
 Etc.

3.1.4.2 Get Trust-service Status List

Role(s)
Everybody can perform this operation.

Objective
Everybody retrieves an updated Trust-service Status List.

Output Data
The DC provides the TSL. The format of this TSL is described in 3.2.7.

Possible errors
For each of the errors below, an error message is returned to ITS-S responsible for the
action.

 An internal error occurs
 Etc.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 17 / 53

3.2 Data structures

The data structures Data, SignedData, EncryptedData and associated algorithm identifiers
types described below are used to build protocol messages between ITS-S and PKI, and
between PKI entities, with clearly defined security properties.

The CRL structure allows the revocation of long duration certificates (LTCs) used by actors
and PKI entities.

 General design rules

 version is placed first to allow for the block format to change (should not be used to
describe the version of the inner content)

 contentType describes what is to be found in the associated inner content (and its
version)

 cryptographic parameters are before the data to decrypt/verify (hash/signature
algorithm, recipients, encryptionParameters), this allows to stream data

 signature is placed after the data

 Data type

-used as the most external container
The content is optional to allow for external content declaration

Data ::= SEQUENCE {

 version Version DEFAULT v1,

 contentType ContentType,

 content OCTET STRING OPTIONAL }

ContentType ::= OBJECT IDENTIFIER

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 18 / 53

 Algorithm identifier types

This section defines sets of algorithms:

 signature algorithms
 data encryption algorithms
 key encryption algorithms
 hash algorithms

Each defined algorithm is associated to a unique identifier and is accompanied by optional
parameters where applicable. The sets of algorithms are dynamically extensible (at
runtime), which allows for crypto agility.

SignatureAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({SignatureFunctions}),

 parameters ALGORITHM.&Type({SignatureFunctions}{@algorithm}) OPTIONAL }

ContentEncryptionAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({DataEncryptionFunctions}),

 parameters ALGORITHM.&Type({DataEncryptionFunctions}{@algorithm}) OPTIONAL }

HashAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({HashFunctions}),

 parameters ALGORITHM.&Type({HashFunctions}{@algorithm}) OPTIONAL }

KeyEncryptionAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({KeyEncryptionFunctions}),

 parameters ALGORITHM.&Type({KeyEncryptionFunctions}{@algorithm}) OPTIONAL }

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 19 / 53

 SignedData type

This data structure is flexible enough to allow for internal or external signed content,
multiple signers, multiple signatures, and one-pass verification (stream).

Data is signed using the following process:

 an empty SignedData structure is created, with version set to v1,

and signedContentType set to the appropriate value

 the signed data can either be enclosed in an OCTET STRING and included in

the SignedData structure, or left aside (detached or external signature)

 each signer does:

₋ choose the preferred hash algorithms: one to digest the signed content, one to digest
the attributes

₋ optionally include those hash algorithm identifiers in the hashAlgorithms collection, in

order to facilitate the one-pass signature verification

₋ digest the signed content and store the result in an Attribute structure of type attr-
messageDigest

₋ create an Attribute structure of type attr-contentType containing

the signedContentType value

₋ create a SignerInfo structure containing:

 the 2 precedent Attribute structures in the signedAttributes collection

 an optional Attribute of type attr-signingTime in the signedAttributes collection

 the signerIdentifier set to the appropriate value

 optionally the certificate chain in order to validate the signer

 the digestAlgorithm equal to the hash algorithm used to digest the signed content

 the signatureAlgorithm set to the signature algorithm used by the signer

 the signature value, result of the signature operation applied to the serialization

of the signedAttributes structure

₋ include the composed SignerInfo structure in the signerInfos collection

It is important that the attr-messageDigest and attr-contentType attributes are included in
the signedAttributes. Their presence is mandatory. The attr-signingTime is optional, and
can be required depending on the context.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 20 / 53

SignedData ::= SEQUENCE {

 version Version DEFAULT v1,

 hashAlgorithms HashAlgorithmsIdentifiers,

 signedContentType ContentType,

 signedContent OCTET STRING OPTIONAL,

 signerInfos SignerInfos }

HashAlgorithmsIdentifiers ::= SEQUENCE OF HashAlgorithmIdentifier

SignerInfos ::= SEQUENCE OF SignerInfo

SignerInfo ::= SEQUENCE {

 version Version DEFAULT v1,

 signer [0] SignerIdentifier DEFAULT self:NULL,

 digestAlgorithm [1] HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },

 signatureAlgorithm [2] SignatureAlgorithmIdentifier DEFAULT { algorithm

ecdsa-with-SHA256 },

 signedAttributes SignedAttributes,

 certificateChain SEQUENCE OF Certificate OPTIONAL,

 signature SignatureValue }

SignerIdentifier ::= CHOICE {

 self NULL,

 certificateDigest CertificateDigest,

 certificate Certificate }

CertificateDigest ::= SEQUENCE {

 algorithm HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },

 digest HashedId8 }

SignedAttributes ::= SEQUENCE OF Attribute

Attribute ::= SEQUENCE {

 attrType ATTRIBUTE.&id({SupportedAttributes}),

 attrValue ATTRIBUTE.&Type({SupportedAttributes}{@attrType}) OPTIONAL }

SignatureValue OCTET STRING

-- SignatureValue should be opaque to the user/caller of security functions.

-- Internally, an ECDSA signature contains the following structure:

Ecdsa-Sig-Value ::= SEQUENCE {

 r INTEGER,

 s INTEGER }

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 21 / 53

 EncryptedData type

Data is encrypted to a number of recipients following this process:

 The sender chooses a content encryption algorithm and parameters.
 The sender randomly generates a content encryption symmetric key.
 The sender encrypts this content encryption symmetric key for each recipient.
 For each recipient, a corresponding RecipientInfo structure is built.
 The content is encrypted using chosen algorithm, parameters, and content encryption

symmetric key.
 The encrypted content, encryption algorithm parameters, and all RecipientInfo instances

are collected together to form an EncryptedData structure.

When the recipient is identified by its public key and not by its certificate (for example when
the recipient requests a certificate), the recipients field of type HashedId8 shall be calculated
as the 8 lowest order octets of the SHA256 digest of the encoded public key in compressed
form.

If the encrypted content is to be transmitted outside of this EncryptedData structure,

the EncryptedData structure can be used to transport the encrypted symmetric encryption

key and encryption parameters. The encryptedContent element is optional.

EncryptedData ::= SEQUENCE {

 version Version DEFAULT v1,

 recipients RecipientInfos,

 encryptedContentType ContentType,

 encryptionAlgorithm ContentEncryptionAlgorithmIdentifier,

 encryptedContent OCTET STRING OPTIONAL }

RecipientInfos ::= SEQUENCE SIZE (1..MAX) OF RecipientInfo

RecipientInfo ::= SEQUENCE {

 recipient HashedId8,

 kexalgid KeyEncryptionAlgorithmIdentifier DEFAULT { algorithm id-ecies-103097 },

 encryptedKeyMaterial OCTET STRING }

If kexalgid is the algorithm identified by id-ecies-103097, then the encryptedKeyMaterial shall
contain the serialization of an ECIESEncryptedKey103097 data type.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 22 / 53

 Certificate Revocation List

The Certificate Revocation List (CRL) is generated and signed by the RCA component.

ASN.1 notation definition

Crl ::= SEQUENCE {

 unsigned_crl ToBeSignedCrl,

 signature_algorithm SignatureAlgorithmIdentifier,

 signature Signature } -- signature is applied on unsigned_crl

ToBeSignedCrl ::= SEQUENCE {

 version Version,

 signer SignerIdentifier,

 -- ca_id HashedId8, -- redondant si le modèle crl_signer n'est pas supporté)

 thisUpdate Time32,

 nextUpdate Time32,

 entries SEQUENCE OF HashedId8 }

 Trust-service Status List

ASN.1 notation definition

Tsl ::= SEQUENCE {

 unsigned_tsl ToBeSignedTsl,

 signature_algorithm SignatureAlgorithmIdentifier,

 signature SignatureValue }

-- signature is applied on unsigned_tsl

ToBeSignedTsl ::= SEQUENCE {

 version Version,

 signer_info SignerIdentifier,

 notBefore Time32,

 notAfter Time32,

 trust_services SEQUENCE OF TrustService }

TrustService ::= SEQUENCE {

 serviceId TRUSTSERVICE.&id ({TrustServiceSet}),

 serviceValue TRUSTSERVICE.&Value ({TrustServiceSet}{@serviceId}) }

TrustServiceSet TRUSTSERVICE ::=

 { ts-foreignRoot

 | ts-renewedRoot

 | ts-ea

 | ts-aa

 | ts-distributionCenter

 | ts-otherTslPointer

 , ... }

TRUSTSERVICE ::= CLASS {

 &id ENUMERATED UNIQUE,

 &Value }

WITH SYNTAX {

 SYNTAX &Value

 ID &id }

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 23 / 53

ts-foreignRoot TRUSTSERVICE ::= {

 SYNTAX Certificate

 ID ServiceType:foreignRoot }

ts-renewedRoot TRUSTSERVICE ::= {

 SYNTAX SEQUENCE {

 rootCertificate Certificate,

 linkRootCertificate Certificate }

 ID ServiceType:renewedRoot }

ts-ea TRUSTSERVICE ::= {

 SYNTAX SEQUENCE {

 certificate Certificate,

 linkedCertificate Certificate OPTIONAL,

 accessPoint IA5STRING }

 ID ServiceType:ea }

ts-aa TRUSTSERVICE ::= {

 SYNTAX SEQUENCE {

 certificate Certificate,

 accessPoint IA5STRING }

 ID ServiceType:aa }

ts-distributionCenter TRUSTSERVICE ::= {

 SYNTAX IA5STRING

 ID ServiceType:distributionCenter }

ts-otherTslPointer TRUSTSERVICE ::= {

 SYNTAX IA5STRING

 ID ServiceType:otherTslPointer }

ServiceType ::= ENUMERATED {

 foreignRoot,

 renewedRoot,

 ea,

 aa,

 distributionCenter,

 otherTslPointer,

 ... }

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 24 / 53

 Mapping with ETSI Standards

Some data types defined in ETSI TS 103097 and used in this protocol need to be redefined
in ASN.1 notation:

HashedId8 ::= OCTET STRING (SIZE(8))

Certificate ::= OCTET STRING

Time32 ::= INTEGER (0..4294967295)

The types SubjectAttribute, ValidityRestriction, verification_key and its_aid_ssp_list are
defined in ETSI TS 103097.

A vector of SubjectAttribute elements as used by this protocol will be represented by the
SubjectAttributes type. The content of an element of this data type will be the binary
serialization of a variable-length vector with variable-length length encoding of
SubjectAttribute elements. Similarly, a vector of ValidityRestriction elements will be
represented by the ValidityRestrictions type, and the content of an element of this data
type will be the binary serialization of a variable-length vector with variable-length length
encoding of ValidityRestriction elements.

SubjectAttributes ::= OCTET STRING

ValidityRestrictions ::= OCTET STRING

For example, a vector of 2 SubjectAttribute elements (a verification_key and an
its_aid_ssp_list composed of 2 ITS-AID-SSP) will be encoded as the octet
string “30000002C43CDA0AD74CC8A93141DBE4F2C353EDB8DD416DB14F1766A638
E00B7EE2A752210B2403010000250401000000", which is decomposed as:

30 (variable-length length of the vector)

{

 00 (type=verification_key)

 { <PublicKey>

 00 (algorithm=ecdsa_nistp256_with_sha256)

 { <EccPoint>

 02 (type=compressed_lsb_y_0)

 C43CDA0AD74CC8A93141DBE4F2C353EDB8DD416DB14F1766A638E00B7EE2A752 (x)

 }

 }

 21 (type=its_aid_ssp_list)

 {

 0B (variable-length length of the vector)

 {

 24 (its_aid=CAM)

 03 (variable-length length of the SSP)

 010000 (service_specific_permissions)

 25 (its_aid=DENM)

 04 (variable-length length of the SSP)

 01000000 (service_specific_permissions)

 }

 }

}

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 25 / 53

3.3 PKI Requests

 Create RCA certificate

RCA generates its key pair and generates its self-signed certificate under trusted roles
control.

 Create Authority (LTCA/PCA) certificate

LTCA and PCA requests are transmitted by an off-band mechanism to the RCA entity.

3.3.2.1 Request format

ITSCertificateRequest data type defines a standalone certificate request, which can be
used to transport LTCA or PCA certificate request to the RCA.

ITSCertificateRequest ::= SEQUENCE {

itsCertReq ITSCertificateRequestContent,

signatureAlgorithm SignatureAlgorithmIdentifier DEFAULT { algorithm ecdsa-with-SHA256 },

signature SignatureValue }

ITSCertificateRequestContent ::= SEQUENCE {

version Version DEFAULT v1,

subjectName OCTET STRING (SIZE(0..32)),

subjectAttributes OCTET STRING,

validityRestrictions OCTET STRING }

The following profile shall apply:

 version is set to v1 (0)
 subjectAttributes shall contain the serialization of a subjectAttributes data type and

shall contain both a verification_key and an encryption_key elements
 validityRestrictions shall contain the serialization of the validity_restrictions data

type
 the signature is applied to the itsCertReq field using the private key corresponding to the

public key declared as verification_key (i.e. the request is self-signed)
 subject_attributes and validity_restrictions are defined in [1].

 Request of a Long-Term Certificate (LTC)

POST http://<ea_access_point>

Inputs:

• Content-type: application/x-its-request

• Content: binary encoded EnrolmentRequest object

Outputs:

• Content-type: application/x-its-response

• Content: binary encoded EnrolmentResponse object

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 26 / 53

3.3.3.1 Request format

The ITS-S must build its LTC request by following this process:

 an ECC private key is randomly generated (the response-decryption-key), the
corresponding public key is computed (response-encryption-key)

 an InnerECRequest structure is built, containing:

₋ a randomly generated requestIdentifier
₋ the canonical identifier of the ITS-S
₋ the desired attributes
₋ some optional restrictions
₋ the response-encryption-key

 a SignedData structure is built, with:

₋ the signedContentType set to id-ITS-ISE-ct-EnrolmentRequest
₋ the signedContent containing the InnerECRequest

₋ the signedAttributes collection containing an attr-signingTime attribute
₋ the signer declared as self
₋ the signature computed using the canonical private key

 an EncryptedData structure is built, with:

₋ the recipients are the LTCA, the recipient public key to use is the encryption_key of
the LTCA certificate

₋ the encryptedContentType set to id-ITS-ISE-ct-SignedData

₋ the encryptedContent containing the encrypted representation of the SignedData
structure

 a Data structure is built, with:

₋ the contentType set to id-ITS-ISE-ct-EncryptedData

₋ the content containing the EncryptedData structure

InnerECRequest ::= SEQUENCE {

requestIdentifier OCTET STRING (SIZE(16)),

itsId IA5String,

wantedSubjectAttributes SubjectAttributes,

wantedValidityRestrictions ValidityRestrictions OPTIONAL,

responseEncryptionKey PublicKey }

wantedSubjectAttributes is the serialization of the subject_attributes structure defined in ETSI Standard

[1]; it must contain exactly one instance of the following elements:

 a verification_key,
 an its_aid_ssp_list

wantedValidityRestrictions is the serialization of the subject_validity_restrictions defined
in ETSI Standard [1]; this field is optional because the LTCA already knows the ITS-S and
can set duration and region restrictions on its own.

The requestIdentifier can be reused by the ITS-S if network connectivity has been lost
during the transaction. In that case, it is expected to send the exact same request.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 27 / 53

Security characteristics

 Identity is ensured by the itsId present in the request.
 Integrity is ensured by the signature and verified by checking the signature against the

canonical public key associated to this itsId.
 Confidentiality is ensured by encrypting the request with the encryption public key of the

LTCA certificate.
 Anonymity of the requestor toward an external attacker is ensured by the confidentiality

of the request and its signature. Anonymity of the requestor toward the LTCA is not a
concern (LTCA must know and recognize the requestor).

3.3.3.2 Response format

The ITS-S shall receive a Data structure, containing an EncryptedData structure, containing

a SignedData structure, containing an InnerECResponse structure. In some specific error
cases, the EncryptedData structure can be missing, for example if the LTCA hasn’t been
able to read or validate the responseEncryptionKey in the request.

 if the LTCA has been able to read and to validate the responseEncryptionKey in the
request:

₋ the outermost structure is a Data structure with its contentType set to id-ITS-ISE-ct-
EncryptedData

₋ the content octet string contains an EncryptedData structure, with:
 recipients references the responseEncryptionKey set in the request, the recipient

identifier is computed as described in section EncryptedData
 the encryptedContentType is set to id-ITS-ISE-ct-SignedData
 the encryptedContent, once decrypted, contains a SignedData structure

 if the LTCA hasn’t been able to read and validate the responseEncryptionKey in the
request:

₋ the outermost structure is a Data structure with its contentType set to id-ITS-ISE-ct-
SignedData

₋ the content contains a SignedData structure

In both cases, this expected SignedData structure is:

 the signedContentType is set to id-ITS-ISE-ct-EnrolmentResponse
 the signedContent contains the InnerECResponse
 the signer is populated with the certificateDigest field, containing the HashedId8 of the

LTCA
 the signature is computed using the LTCA certificate private verification key

corresponding to its public verification_key found in the LTCA certificate

The InnerECResponse shall contain:

 the requestHash is the left-most 16 octets of the SHA256 digest of the Data structure

received in the request
 a responseCode indicating the result of the request
 if responseCode is 0, indicating a positive response, then a certificate is returned, and

optionally a CA contribution value for the ITS to compute its private key of his LTC
certificate (implicit certificates using ECQV).

 if responseCode is different than 0, indicating a negative response, then no certificate and
no CA contribution value will be returned.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 28 / 53

InnerECResponse ::= SEQUENCE {

 requestHash OCTET STRING (SIZE(16)),

 responseCode EnrolmentResponseCode,

 certificate OCTET STRING OPTIONAL,

 cAContributionValue INTEGER OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

EnrolmentResponseCode ::= ENUMERATED {

 ok(0),

 cantparse, -- valid for any structure

 badcontenttype, -- not encrypted, not signed, not enrolmentrequest

 imnottherecipient, -- the "recipients" doesn't include me

 unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 decryptionfailed, -- works for ECIES-HMAC and AES-CCM

 unknownits, -- can't retrieve the ITS from the itsId

 invalidsignature, -- signature verification of the request fails

 invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad

 baditsstatus, -- revoked, not yet active

 incompleterequest, -- some elements are missing

 deniedpermissions, -- requested permissions are not granted

 invalidkeys, -- either the verification_key of the encryption_key is bad

 deniedrequest, -- any other reason?

 ... }

Security characteristics

 Identity is ensured by the signer identifier of the SignedData structure (contains the
HashedId8 of the LTCA certificate).

 Integrity is ensured by the signature and verified by checking the signature against the
verification_key of the LTCA certificate.

 Confidentiality is ensured by encrypting the response with the responseEncryptionKey
provided in the request. If this key was not valid, confidentiality is not ensured, but no
personal information is returned.

 Anonymity of the requestor toward an external attacker is ensured by the absence of
identifiable information returned when no encryption is possible, and by encryption of
the response where possible.

 Request of a Pseudonym Certificate (PC)

POST http://aa_access_point

Inputs:

• Content-type: application/x-its-request

• Content: binary encoded AuthorizationRequest object

Outputs:

• Content-type: application/x-its-response

• Content: binary encoded AuthorizationResponse object

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 29 / 53

3.3.4.1 Request format
The ITS-S must build its PC request by following this process:

 an ECC private key is randomly generated (the response-decryption-key), the
corresponding public key is computed (response-encryption-key)

 a random 32 octets long secret key (hmac-key) is generated
 a tag using the HMAC-SHA256 function is computed using the previously generated

hmac-key, on the concatenation of the serialization of verificationKey and encryptionKey
elements (encryptionKey is optional); this tag is truncated to 128 bits and named keyTag

 a SharedATRequest structure is built, with:

₋ a randomly generated requestIdentifier
₋ the eaId identifying the LTCA to contact for verification

₋ the calculated keyTag
₋ the desired attributes
₋ some optional restrictions
₋ a desired start date and time

₋ the response-encryption-key

 a SignedData structure is built, with:

₋ the signedContentType set to id-ITS-ISE-ct-SharedATRequest

₋ the signedAttributes collection containing an attr-signingTime attribute

₋ the signedContent is absent (external signature)

₋ the signer declared as a certificateDigest referencing the LTC

₋ the signature computed using the LTC certificate verification private key

 an EncryptedData structure is built, with:

₋ the recipient is the LTCA, the recipient public key to use is the encryption_key of the

LTCA

₋ the encryptedContentType set to id-ITS-ISE-ct-SignedData
₋ the encryptedContent containing the encrypted representation of the

previous SignedData structure

 an InnerATRequest structure is built, containing:

₋ the verificationKey requested for certification

₋ an optional encryptionKey to be placed in the same certificate

₋ the generated hmac-key

₋ the signedByEC containing the SharedATRequest structure

₋ the detachedEncryptedSignature containing the previous EncryptedData structure

 an EncryptedData structure is built, with:

₋ the recipients are the PCA, the recipient public key to use is the encryption_key of the

PCA

₋ the encryptedContentType set to id-ITS-ISE-ct-AuthorizationRequest
₋ the encryptedContent containing the encrypted representation of

the InnerATRequest structure

 a Data structure is built, with:

₋ the contentType set to id-ITS-ISE-ct-EncryptedData
₋ the content containing the previous EncryptedData structure

wantedSubjectAttributes shall not contain a verification_key or

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 30 / 53

an encryption_key attribute, but shall contain an its_aid_ssp_list attribute.

SharedATRequest ::= SEQUENCE {

 requestIdentifier OCTET STRING (SIZE(16)),

 eaId HashedId8,

 keyTag OCTET STRING (SIZE(16)),

 wantedSubjectAttributes SubjectAttributes,

 wantedValidityRestrictions ValidityRestrictions OPTIONAL,

 wantedStart Time32,

 responseEncryptionKey PublicKey }

InnerATRequest ::= SEQUENCE {

 verificationKey PublicKey,

 encryptionKey PublicKey OPTIONAL,

 hmacKey OCTET STRING (SIZE(32)),

 signedByEC SharedATRequest,

 detachedEncryptedSignature EncryptedData }

The figure 3 illustrates the structure of a PC request.

Figure 3: Structure of a PC request

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 31 / 53

Security characteristics

 Identity is ensured by the signer identifier present in the encrypted signature.
 Integrity is ensured by the signature and verified by checking the signature against the

public key associated to this signer (found in the corresponding LTC). The signature
indirectly covers the verificationKey and encryptionKey elements, by their digests
(second pre-image resistance of the hash function, which is greater than the collision
resistance used in signatures). The PCA cannot verify the signature, only the LTCA can
do it, but the PCA can verify the requested permissions, and can verify that the HMAC
signature of the public keys match the given keyTag.

 Confidentiality toward an external attacker is ensured by encrypting the request to the
encryption key of the PCA.

 Anonymity of the requestor toward an external attacker is ensured by the confidentiality
of the request and its signature. Anonymity of the requestor toward the PCA is ensured
by the additional encryption of the signature and the signer. Anonymity of the requestor
toward the LTCA isn't a concern (the LTCA must know and recognize the requestor).

 Unlinkability of the pseudonym certificates toward an external attacker is ensured by the
confidentiality characteristics. Unlinkability of the pseudonym certificates toward the
PCA is ensured by the additional encryption of the signature and the signer. Unlinkability
of the pseudonym certificates toward the LTCA is ensured by hiding the final public keys
to certify from the LTCA.

3.3.4.2 Response format

The ITS-S shall receive a Data structure, containing an EncryptedData structure, containing
a SignedData structure, containing an InnerATResponse structure. In some specific error
cases, the EncryptedData structure can be missing, for example if the PCA hasn't been able
to read or validate the responseEncryptionKey in the request.

 if the PCA has been able to read and validate the responseEncryptionKey in the request:

₋ the outermost structure is a Data structure with its contentType set to id-ITS-ISE-ct-
EncryptedData

₋ the content octet string contains an EncryptedData structure, with:
 recipients references the responseEncryptionKey set in the request, the recipient

identifier is computed as described in section EncryptedData
 the encryptedContentType is set to id-ITS-ISE-ct-SignedData
 the encryptedContent, once decrypted, contains a SignedData structure

 if the PCA hasn't been able to read and validate the responseEncryptionKey in the request:

₋ the outermost structure is a Data structure with its contentType set to id-ITS-ISE-ct-
SignedData

₋ the content contains a SignedData structure

In both cases, this expected SignedData structure is:

 the signedContentType is set to id-ITS-ISE-ct-AuthorizationResponse
 the signedContent contains the InnerATResponse
 the signer is populated with the certificateDigest field, containing the HashedId8 of the

PCA
 the signature is computed using the PCA private key corresponding to its public

verification_key found in the PCA certificate

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 32 / 53

The InnerATResponse shall contain:

 the requestHash is the left-most 16 octets of the SHA256 digest of the Data structure
received in the request

 a responseCode indicating the result of the request
 if responseCode is 0, indicating a positive response, then subjectAssurance, startDate and

endDate are returned to be set in corresponding PC
 if responseCode is different than 0, indicating a negative response, then no

subjectAssurance, no startDate, and no endDate are returned

InnerATResponse ::= SEQUENCE {

 requestHash OCTET STRING (SIZE(16)),

 responseCode AuthorizationResponseCode,

 certificate Certificate OPTIONAL,

 cAContributionValue INTEGER OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationResponseCode ::= ENUMERATED {

 ok(0), -- ITS->AA

 its-aa-cantparse, -- valid for any structure

 its-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest

 its-aa-imnottherecipient, -- the "recipients" doesn't include me

 its-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 its-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM

 its-aa-keysdontmatch, -- HMAC keyTag verification fails

 its-aa-incompleterequest, -- some elements are missing

 its-aa-invalidencryptionkey, -- the responseEncryptionKey is bad

 its-aa-outofsyncrequest, -- signingTime is outside acceptable limits

 its-aa-unknownea, -- the EA identified by eaId is unknown to me

 its-aa-invalidea, -- the EA certificate is revoked

 its-aa-deniedpermissions, -- I, the AA, deny the requested permissions -- AA->EA

 aa-ea-cantreachea, -- the EA is unreachable (network error?) -- EA->AA

 ea-aa-cantparse, -- valid for any structure

 ea-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest

 ea-aa-imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't

include me

 ea-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 ea-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM -- TODO: continuer

 invalidaa, -- the AA certificate presented is invalid/revoked/whatever

 invalidaasignature, -- the AA certificate presented can't validate the request

signature

 wrongea, -- the encrypted signature doesn't designate me as the EA

 unknownits, -- can't retrieve the EC/ITS in my DB

 invalidsignature, -- signature verification of the request by the EC fails

 invalidencryptionkey, -- signature is good, but the key is bad

 deniedpermissions, -- permissions not granted

 deniedtoomanycerts, -- parallel limit

 ... }

Security characteristics

 Identity is ensured by the signer identifier of the SignedData structure (contains the
HashedId8 of the PCA’s certificate).

 Integrity is ensured by the signature and verified by checking the signature against the
verification_key of the PCA.

 Confidentiality is ensured by encrypting the response to the responseEncryptionKey
provided in the request. If this key wasn't valid, confidentiality isn't ensured, but no
personal information is returned.

 Anonymity of the requestor toward an external attacker is ensured by the absence of
identifiable information returned when no encryption is possible, and by encryption of
the response when possible.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 33 / 53

 Validate Pseudonym Certificate (PC) request

POST http://ea_access_point

Inputs:

• Content-type: application/x-its-request

• Content: binary encoded AuthorizationValidationRequest object

Outputs:

• Content-type: application/x-its-response

• Content: binary encoded AuthorizationValidationResponse object

3.3.5.1 Request format

The PCA must build its permissions verification request by following this process:

 an ECC private key is randomly generated (the response-decryption-key), the
corresponding public key is computed (response-encryption-key)

 an AuthorizationValidationRequest structure is built, with:

₋ a randomly generated requestIdentifier

₋ the sharedATRequest containing the signedByEC submitted in the pseudonym certificate
request

₋ the detachedEncryptedSignature submitted in the same pseudonym certificate request

₋ the responseEncryptionKey

 a SignedData structure is built, with:

₋ the signedContentType set to id-ITS-ISE-ct-AuthorizationValidationRequest
₋ the signedContent containing the AuthorizationValidationRequest

₋ the signedAttributes collection containing an attr-signingTime attribute
₋ the signer declared as certificate and contains the PCA certificate
₋ the signature is computed using the PCA signature private key

 an EncryptedData structure is built, with:

₋ the recipient is the LTCA, the recipient’s public key to use is the encryption_key of the
LTCA

₋ the encryptedContentType set to id-ITS-ISE-ct-SignedData

₋ the encryptedContent containing the encrypted representation of the SignedData
structure

 a Data structure is built, with:

₋ the contentType set to id-ITS-ISE-ct-EncryptedData

₋ the content containing the EncryptedData structure

AuthorizationValidationRequest ::= SEQUENCE {

 requestIdentifier OCTET STRING (SIZE(16)),

 sharedATRequest SharedATRequest,

 detachedEncryptedSignature EncryptedData,

 responseEncryptionKey PublicKey }

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 34 / 53

The figure 4 illustrates the structure of PC validation request.

Figure 4: The structure of PC validation request

Security characteristics

 Identity is ensured by the PCA certificate used as the signer identifier in the SignerInfo
structure.

 Integrity is ensured by the signature and verified by checking the signature against the
verification public key assessed in this certificate. The validity of the requestor PCA is
verified by chaining the certificate to a trusted root.

 Confidentiality is ensured by encrypting the request with the encryption public key of the
LTCA certificate.

 Anonymity of the ITS-S toward an external attacker is ensured by the confidentiality of
the request.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 35 / 53

3.3.5.2 Response format

The PCA shall receive a Data structure, containing an EncryptedData structure, containing
a SignedData structure, containing an AuthorizationValidationResponse structure. In some
specific error cases, the EncryptedData structure can be missing, for example if the LTCA
hasn't been able to read or validate the responseEncryptionKey in the request.

 if the LTCA has been able to read and validate the responseEncryptionKey in the request:

₋ the outermost structure is a Data structure with its contentType set to id-ITS-ISE-ct-
EncryptedData

₋ the content octet string contains an EncryptedData structure, with:
 recipients references the responseEncryptionKey set in the request, the recipient

identifier is computed as described in section EncryptedData
 the encryptedContentType is set to id-ITS-ISE-ct-SignedData
 the encryptedContent, once decrypted, contains a SignedData structure

 if the LTCA is not able to read and to validate the responseEncryptionKey in the request:

₋ the outermost structure is a Data structure with its contentType set to id-ITS-ISE-ct-
SignedData

₋ the content contains a SignedData structure

In both cases, the expected SignedData structure is:

 the signedContentType is set to id-ITS-ISE-ct-AuthorizationValidationResponse
 the signedContent contains the AuthorizationValidationResponse
 the signer is populated with the certificateDigest field, containing the HashedId8 of the

LTCA certificate.
 the signature is computed using the LTCA private key corresponding to its public

verification_key found in the LTCA certificate

The InnerATResponse shall contain:

 the requestHash is the left-most 16 octets of the SHA256 digest of the Data structure
received in the request

 a responseCode indicating the result of the request

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 36 / 53

AuthorizationValidationResponse ::= SEQUENCE {

 requestHash OCTET STRING (SIZE(16)),

 responseCode AuthorizationValidationResponseCode,

 subjectAssurance SubjectAssurance OPTIONAL,

 startDate [0] Time32 OPTIONAL,

 endDate [1] Time32 OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationValidationResponseCode ::= ENUMERATED {

 ok(0),

 cantparse, -- valid for any structure

 badcontenttype, -- not encrypted, not signed, not permissionsverificationrequest

 imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't

include me

 unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 decryptionfailed, -- works for ECIES-HMAC and AES-CCM

 invalidaa, -- the AA certificate presented is invalid/revoked/whatever

 invalidaasignature, -- the AA certificate presented can't validate the request

signature

 wrongea, -- the encrypted signature doesn't designate me as the EA

 unknownits, -- can't retrieve the EC/ITS in my DB

 invalidsignature, -- signature verification of the request by the EC fails

 invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad

 deniedpermissions, -- requested permissions not granted

 deniedtoomanycerts, -- parallel limit

 deniedrequest, -- any other reason?

 ... }

Security characteristics

 Identity is ensured by the signer identifier of the SignedData structure (contains the
HashedId8 of the LTCA).

 Integrity is ensured by the signature and verified by checking the signature against the
verification_key of the LTCA certificate.

 Confidentiality is ensured by encrypting the response with the responseEncryptionKey
provided in the request. If this key wasn't valid, confidentiality isn't ensured, but no
personal information is returned.

 Anonymity of the ITS-S requesting a pseudonym certificate toward an external attacker
is ensured by the absence of identifiable information returned when no encryption is
possible, and by encryption of the response when possible.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 37 / 53

 Get CRL

GET http://dc_access_point/getcrl/HashedId8

The abs_path part of the HTTP request is built by taking the DC access point (from the TSL or from an

ad-hoc configuration), appending “/getcrl/”, and the uppercase hexadecimal representation of

HashedId8.

Inputs:

• No inputs

Outputs:

• Content-type: application/x-its-crl

• Content: binary encoded CRL object issued by the entity identified byHashedId8

The format of CRL is described in section 3.2.6.

 Get TSL

GET http://dc_access_point/gettsl/HashedId8

The abs_path part of the HTTP request is built by taking the DC access point (from the TSL or from an

ad-hoc configuration), appending “/gettsl/”, and the uppercase hexadecimal representation of

HashedId8.

Inputs:

• No inputs

Outputs:

• Content-type: application/x-its-tsl

• Content: binary encoded TSL object issued by the entity identified by HashedId8

The format of TSL is described in section 3.2.7.

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 38 / 53

4. Appendix A: Examples of request

4.1 Long Term Certificate request example

The ITS-S whose canonical ID "Renault-123456" requests an LTC usable for CAM and
DENM with some permissions, and no validity restriction. The InnerECRequest content is:

innerecreq InnerECRequest ::= {

 requestIdentifier 'E665759B9756D789FCCB1B2577E46A66'H,

 itsId "Renault-123456",

 wantedSubjectAttributes '30

000002D50E7A16DEF1F5E2FB22F85ED8FC4E9F8D22404061EE6F22290280807CC223F2

21092403010000250401000000'H, -- a verification_key and 2 ITSAIDSSP (CAM&DENM)

 responseEncryptionKey {

 type compressed-lsb-y-0,

 x '77BCBC87A68ECFE8CD7DD6CDC0320A9806996CF5A08D72C3226450E68BF33BD0'H

 }

}

The DER encoding of this innerecreq is the following octet stream, 126 octets long, here
beautified for readability:

30 7C -- InnerECRequest

 04 10 E665759B9756D789FCCB1B2577E46A66 -- requestIdentifier

 16 0E 52656E61756C742D313233343536 -- itsId

 04 31

30000002D50E7A16DEF1F5E2FB22F85ED8FC4E9F8D22404061EE6F22290280807CC223F221092403010000250401000

000 -- wantedSubjectAttributes

 30 25 -- responseEncryptionKey

 0A 01 02 -- type

 02 20 77BCBC87A68ECFE8CD7DD6CDC0320A9806996CF5A08D72C3226450E68BF33BD0 -- x

This PDU is then encapsulated in a SignedData structure:

signedreq SignedData ::= {

 version v1,

 hashAlgorithms {

 { algorithm id-sha256 }

 },

 signedContentType id-ITS-ISE-ct-EnrolmentRequest,

 signedContent '... here goes the innerecreq ...'H,

 signerInfos {

 {

 version v1,

 signer self:NULL,

 digestAlgorithm { algorithm id-sha256 },

 signatureAlgorithm { algorithm ecdsa-with-SHA256 },

 signedAttributes {

 {

 attrType id-messageDigest,

 attrValue OCTET STRING ::=

'AA349D9F1817AF5C662B04250427B3E2D07A027FD8AEA70114783661EA5DB11D'H -- SHA256 digest value of

innerecreq

 },

 {

 attrType id-contentType,

 attrValue OBJECT IDENTIFIER ::= id-ITS-ISE-ct-EnrolmentRequest

 },

 {

 attrType id-signingTime,

 attrValue INTEGER ::= 1426674524 -- 18 march 2015 10:28:44 UTC

 }

 },

 -- no certificateChain

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 39 / 53

 signature

'304502206982D1E49CA00BCE5F9DB81FDFEC06FE3AAC4915394FA7F171AED076E443C655022100DF88B8C08F5FA3B5

7DEA4D66A5DBEDEF378CC7500D9F2DC13AC50BA0DAADCF10'H

 }

 }

}

The DER encoding of this signedreq is the following octet stream, 344 octets long:

30 82 0154 -- SignedData

 30 0D -- hashAlgorithms

 30 0B -- HashAlgorithmIdentifier

 06 09 608648016503040201 -- id-sha256

 06 0C 2B0601040181AD5A04010104 -- id-ITS-ISE-ct-EnrolmentRequest

 04 7E <...insert here the innerecreq...>

 30 81 B4 -- SignerInfos

 30 81 B1 -- SignerInfo

 30 66 -- signedAttributes

 30 30

 06 0C 2B0601040181AD5A04010301 -- id-messageDigest

 04 20 AA349D9F1817AF5C662B04250427B3E2D07A027FD8AEA70114783661EA5DB11D

 30 1C

 06 0C 2B0601040181AD5A04010302 -- id-ContentType

 06 0C 2B0601040181AD5A04010104

 30 14

 06 0C 2B0601040181AD5A04010303 -- id-signingTime

 02 04 5509535C

 04 47

304502206982D1E49CA00BCE5F9DB81FDFEC06FE3AAC4915394FA7F171AED076E443C655022100DF88B8C08F5FA3B57

DEA4D66A5DBEDEF378CC7500D9F2DC13AC50BA0DAADCF10 -- signature

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI
TS103097 parameters (this produces a 360 octets long octet string), and the AES key is
encrypted using ECIES mechanism with default ETSI TS103097 parameters to the LTCA
identified by its HashedId8='0001020304050607'H. The resulting EncryptedData structure
is built like this:

encryptedreq EncryptedData ::= {

 version v1,

 recipients {

 {

 recipient '0001020304050607'H,

 kexalgid { algorithm id-ecies-103097 },

 encryptedKeyMaterial

'304C30260A0103022100ABC4563E98E4395FC2D968E2ADA4A310D49D5D9E4C929EC1F5EDF13F6D8797CC04107F64B4

47AF6913833C1C5F5BF60131930410E93749FF54892F24533A1EE746EF23C2'H -- contains an

ECIESEncryptedKey103097

 }

 },

 encryptedContentType id-ITS-ISE-ct-SignedData,

 contentEncryptionAlgorithm {

 algorithm aes-128-ccm-103097,

 parameters { aes-nonce '000102030405060708090A0B0C'H }

 },

 encryptedContent '... here goes the encrypted signedreq ...'H

}

The DER encoding of this encryptedreq is the following octet stream, 507 octets long:

30 82 01F7 -- EncryptedData

 30 5C -- recipients

 30 5A -- RecipientInfo

 04 08 0001020304050607 --recipient

 04 4E

304C30260A0103022100ABC4563E98E4395FC2D968E2ADA4A310D49D5D9E4C929EC1F5EDF13F6D8797CC04107F64B44

7AF6913833C1C5F5BF60131930410E93749FF54892F24533A1EE746EF23C2 -- encryptedKeyMaterial

 06 0C 2B0601040181AD5A04010102 -- id-ITS-ISE-ct-SignedData

 30 1D -- encryptionAlgorithm

 06 0C 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 40 / 53

 04 0D 000102030405060708090A0B0C -- aes-nonce

 04 82 0168 <...insert here the encrypted signedreq...>

This PDU is then encapsulated in a Data structure, built like this:

enrolmentrequest Data ::= {

 version v1,

 contentType id-ITS-ISE-ct-EncryptedData,

 content '... here goes the encryptedrec ...'H

}

The DER encoding of this enrolmentrequest is the following octet stream, 529 octets long:

30 82 020B -- Data

 06 0C 2B0601040181AD5A04010103 -- id-ITS-ISE-ct-EncryptedData

 04 82 01FB <...insert here the encryptedreq...>

4.2 Pseudonym Certificate request example

An ITS-S requests an PC usable for CAM and DENM with some permission, no encryption
key, and no validity restrictions. First, a SharedATRequest is built:

sharedatreq SharedATRequest ::= {

 requestIdentifier '41E33B6C090187D2BAE0A4E8C5A77DC4'H,

 eaId '0001020304050607'H, -- the EA

 keyTag 'FA5BECEAA0E6E5B6088DE52EDAD6F18F'H,

 wantedSubjectAttributes '0D21092403010000250401000000'H, -- 2 ITSAIDSSP (CAM&DENM)

 -- no wantedValidityRestrictions

 wantedStart 1426723200, -- 19 march 2015 00:00:00 UTC

 responseEncryptionKey {

 type compressed-lsb-y-1,

 x 'F302F81307B7CA056023EA959EAB932D043AA7C86ACA6B4ECE8E8F5FDC35AE4F'H

 }

}

The DER encoding of this sharedatreq is the following octet stream, 110 octets long:

30 6C -- SharedATRequest

 04 10 41E33B6C090187D2BAE0A4E8C5A77DC4 -- requestIdentifier

 04 08 0001020304050607 -- eaId

 04 10 FA5BECEAA0E6E5B6088DE52EDAD6F18F -- keyTag

 04 0E 0D21092403010000250401000000 -- wantedSubjectAttributes

 02 04 550A1180 -- wantedStart

 30 26 -- responseEncryptionKey

 0A 01 03 -- type

 02 21 00F302F81307B7CA056023EA959EAB932D043AA7C86ACA6B4ECE8E8F5FDC35AE4F -- x

This sharedatreq needs to be signed, so a SignedData structure is built:

signedextsharedatreq SignedData ::= {

 version v1,

 hashAlgorithms {

 { algorithm id-sha256 }

 },

 signedContentType id-ITS-ISE-ct-SharedATRequest,

 -- no signedContent, this is an external signature

 signerInfos {

 {

 version v1,

 signer certificateDigest {

 algorithm { algorithm id-sha256 },

 digest '97583D6CE5C46B5E'H -- this is the HashedId8 of the EC

 },

 digestAlgorithm { algorithm id-sha256 },

 signatureAlgorithm { algorithm ecdsa-with-SHA256 },

 signedAttributes {

 {

 attrType id-messageDigest,

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 41 / 53

 attrValue OCTET STRING ::=

'01E10ED2BD3E0FFB451FD64036ED12A1B5942F78365CF39D5F22C9A3DF3F697A'H -- SHA256 digest value of

sharedatreq

 },

 {

 attrType id-contentType,

 attrValue OBJECT IDENTIFIER ::= id-ITS-ISE-ct-SharedATRequest

 },

 {

 attrType id-signingTime,

 attrValue INTEGER ::= 1426674528 -- 18 march 2015 10:28:48 UTC

 }

 },

 -- no certificateChain

 signature

'304402201C1B4CCA76525F1830A22E7E6B8F6ABEAABC72B0ECAC175CEF6601CA35726AFD02205931C93E92E0D58BC6

B43EBFE75F29B1BDD4289EBE8E3467F2D640F800CC6234'H

 }

 }

}

The DER encoding of this signedextsharedatreq is the following octet stream, 226 octets
long:

30 81 DF -- SignedData

 30 0D -- hashAlgorithms

 30 0B -- HashAlgorithmIdentifier

 06 09 608648016503040201 -- id-sha256

 06 0C 2B0601040181AD5A0401010A

 30 81 BF -- signerInfos

 30 81 BC -- SignerInfo

 30 0A -- signer

 04 08 97583D6CE5C46B5E -- digest of EC

 30 66 -- signedAttributes

 30 30

 06 0C 2B0601040181AD5A04010301 -- id-messageDigest

 04 20 01E10ED2BD3E0FFB451FD64036ED12A1B5942F78365CF39D5F22C9A3DF3F697A

 30 1C

 06 0C 2B0601040181AD5A04010302 -- id-ContentType

 06 0C 2B0601040181AD5A0401010A

 30 14

 06 0C 2B0601040181AD5A04010303 -- id-signingTime

 02 04 55095360

 04 46

304402201C1B4CCA76525F1830A22E7E6B8F6ABEAABC72B0ECAC175CEF6601CA35726AFD02205931C93E92E0D58BC6B

43EBFE75F29B1BDD4289EBE8E3467F2D640F800CC6234 -- signature

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI
TS103097 parameters (this produces a 242 octets long octet string), and the AES key is
encrypted using ECIES mechanism with default ETSI TS103097 parameters to the LTCA
identified by its HashedId8='0001020304050607'H. The resulting EncryptedData structure
is built like this:

encryptedsignedextsharedatreq EncryptedData ::= {

 version v1,

 recipients {

 {

 recipient '0001020304050607'H,

 kexalgid { algorithm id-ecies-103097 },

 encryptedKeyMaterial

'304C30260A01030221008FE956196A3F36BD514AD219CAC462DC13B1F99C98BEAF8CDE6C64269A55DA6C04108B5B8E

36EAB36577F0B76270C45D1D8204103E05A6E942F0BEE2A12779BEBA7577E1'H -- contains an

ECIESEncryptedKey103097

 }

 },

 encryptedContentType id-ITS-ISE-ct-SignedData,

 contentEncryptionAlgorithm {

 algorithm aes-128-ccm-103097,

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 42 / 53

 parameters { aes-nonce '000102030405060708090A0B0D'H }

 },

 encryptedContent '... here goes the encrypted signedextsharedatreq ...'H

}

The DER encoding of this encryptedsignedextsharedatreq is the following octet stream, 372
octets long:

30 82 0170 -- EncryptedData

 30 5C -- recipients

 30 5A -- RecipientInfo

 04 08 0001020304050607 --recipient

 04 4E

304C30260A01030221008FE956196A3F36BD514AD219CAC462DC13B1F99C98BEAF8CDE6C64269A55DA6C04108B5B8E3

6EAB36577F0B76270C45D1D8204103E05A6E942F0BEE2A12779BEBA7577E1 -- encryptedKeyMaterial

 06 0C 2B0601040181AD5A04010102 -- id-ITS-ISE-ct-SignedData

 30 1D -- encryptionAlgorithm

 06 0C 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097

 04 0D 000102030405060708090A0B0D -- aes-nonce

 04 81 E2 <...insert here the encrypted signedextsharedatreq...>

The sharedatreq, the encryptedsignedextsharedatreq, public keys, and HMAC key are then
encapsulated in an InnerATRequest:

inneratreq InnerATRequest ::= {

 verificationKey {

 type compressed-lsb-y-1,

 x 'A009A3032AF6E9DC00BF70A9E36C84275A1CA8087A12245A7EB5DE2B2C805166'H

 },

 -- no encryptionKey

 hmacKey '60B316FD92AB81B793D5207F11AE34CF5AF6BA425A0B8395E2371DEB5479D3A2'H,

 signedByEC '... here goes the sharedatreq ...',

 detachedEncryptedSignature '... here goes the encryptedsignedextsharedatreq ...'

}

The DER encoding of this inneratreq is the following octet stream, 560 octets long:

30 82 022C -- InnerATRequest

 30 26 -- verificationKey

 0A 01 03 -- type

 02 21 A009A3032AF6E9DC00BF70A9E36C84275A1CA8087A12245A7EB5DE2B2C805166 -- x

 -- no encryptionKey

 04 20 60B316FD92AB81B793D5207F11AE34CF5AF6BA425A0B8395E2371DEB5479D3A2 -- hmacKey

 30 6C <...insert here the rest of the sharedatreq...>

 30 82 0170 <...insert here the rest of the encryptedsignedextsharedatreq...>

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI
TS103097 parameters (this produces a 576 octets long octet string), and the AES key is
encrypted using ECIES mechanism with default ETSI TS103097 parameters to the PCA
identified by its HashedId8='08090A0B0C0D0E0F'H. The resulting EncryptedData structure
is built like this:

encryptedreq EncryptedData ::= {

 version v1,

 recipients {

 {

 recipient '08090A0B0C0D0E0F'H,

 kexalgid { algorithm id-ecies-103097 },

 encryptedKeyMaterial

'304B30250A01030220214A61E116D709ABB38E211253A55BC66110C713C1253799AA1981A015A158060410E5A48762

5B458D28C96782E5FDB378A90410A3956CD0BA50F814F8BB6B6B4BCC5E1F'H -- contains an

ECIESEncryptedKey103097

 }

 },

 encryptedContentType id-ITS-ISE-ct-AuthorizationRequest,

 contentEncryptionAlgorithm {

 algorithm aes-128-ccm-103097,

 parameters { aes-nonce '000102030405060708090A0B0E'H }

 },

 encryptedContent '... here goes the encrypted inneratreq ...'H

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 43 / 53

}

The DER encoding of this encryptedreq is the following octet stream, 722 octets long:

30 82 02CE -- EncryptedData

 30 5B -- recipients

 30 59 -- RecipientInfo

 04 08 08090A0B0C0D0E0F --recipient

 04 4D

304B30250A01030220214A61E116D709ABB38E211253A55BC66110C713C1253799AA1981A015A158060410E5A487625

B458D28C96782E5FDB378A90410A3956CD0BA50F814F8BB6B6B4BCC5E1F -- encryptedKeyMaterial

 06 0C 2B0601040181AD5A04010106 -- id-ITS-ISE-ct-AuthorizationRequest

 30 1D -- encryptionAlgorithm

 06 0C 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097

 04 0D 000102030405060708090A0B0E -- aes-nonce

 04 82 0240 <...insert here the encrypted inneratreq...>

This PDU is then encapsulated in a Data structure, built like this:

authorizationrequest Data ::= {

 version v1,

 contentType id-ITS-ISE-ct-EncryptedData,

 content '... here goes the encryptedrec ...'H

}

The DER encoding of this authorizationrequest is the following octet stream, 744 octets
long:

30 82 02E4 -- Data

 06 0C 2B0601040181AD5A04010103 -- id-ITS-ISE-ct-EncryptedData

 04 82 02D2 <...insert here the encryptedreq...>

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 44 / 53

5. Appendix B: Encryption of a message

This appendix describes cryptographic operations to be implemented to encrypt a
message (any) according to the mechanisms used in ETSI Standards [1]. Message
encryption is used for example to communicate between ITS-S and the PKI (LTCA / PCA),
and between the PCA and LTCA entities of the PKI.

Encrypt a message m (N octets) from a sender to a receiver.
Assuming an elliptic curve (p: curve prime, G: base point, q: base point order).
Sender only knows the (certified) encryption public key “Kb” of the receiver.

KDF (): SHA256(S || counter)...
E (a, b): a xor b
E-1(a, b): a xor b
MAC (km, m): HMAC (km, m)
||: concatenation

 Sender generates a random AES key A (128 bits, 16 octets)
 Sender chooses a nonce n, 12 octets
 Sender encrypts the message m with AES-CCM mode, the key A, and the nonce n. The

output is the encrypted message M with an authentication tag (N+16 octets).
 Sender generates an ephemeral private key r in [1, q-1], and the associated public key

v=r.G, 33 octets if compressed
 Sender derives a shared secret S from receiver encryption public key (Kb): S=Px, with

(Px, Py)=r.Kb (verify that P != 0,if not, back to previous step)
 Sender then derives a set of keys ke and km with derivation algorithm: (ke ||

km)=KDF(S), ke is 16 octets long, km is 32 octets long
 Sender encrypts the AES key: c=E(ke, A), c is 16 octets long
 Sender produces a tag on the encrypted message: t=MAC(km, c), t is 16 octets long
 Sender transmits to the receiver a message C containing:
 The identifier for the recipient's certificate (cert_id), 8 octets
 The encrypted message M
 The encryption parameters (algorithm identifier aes_128_ccm, nonce n), 13 octets
 The ephemeral public key (v)
 The encrypted key (c) with the associated tag (t)

₋ 8+N+16+13+33+16+16: 102+N octets, plus protocol overheads.

 Receiver has its private key kb, and receives the message C.
 Receiver derives a shared secret S=Px, with (Px, Py)=kb.v
 Receiver derives (ke || km)=KDF(S)
 Receiver checks that the tag t verifies MAC(km, c), if not, receiver returns an error

message

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 45 / 53

6. Appendix C: ASN.1 module

ISEEnrolmentProtocolv1

 { iso(1) identified-organization(3) dod(6) internet(1) private(4)

 enterprise(1) opentrust(22234) innovation(4) ise(1) modules(0)

 iseenrolmentprotocolv1(0) }

-- version BIT STRING { v1990(0), v1994(1), v1997(2) } ::= v1997

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use

-- in the other ASN.1 modules. Other applications may use them for

-- their own purposes.

IMPORTS

 -- RFC5084 Appendix

 aes, id-aes128-CCM, id-aes256-CCM, AES-CCM-ICVlen

 FROM CMS-AES-CCM-and-AES-GCM

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-9(9) smime(16) modules(0) cms-aes-ccm-and-gcm(32) }

 -- RFC5480

 ecdsa-with-SHA256, ecdsa-with-SHA384

 FROM PKIX1Algorithms2008

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0) 45 }

 -- RFC 4055 [RSAOAEP]

 id-sha256, id-sha384

 FROM PKIX1-PSS-OAEP-Algorithms

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-rsa-pkalgs(33) } ;

/************

-- OIDs

************/

-- For the ISE project, lets allocate OIDs under the OpenTrust arc

id-OpenTrust OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) private(4)

enterprise(1) opentrust(22234) }

id-OT-Innovation OBJECT IDENTIFIER ::= { id-OpenTrust 4 }

id-OT-Innovation-ISE OBJECT IDENTIFIER ::= { id-OT-Innovation 1 }

id-ITS-ISE-ct OBJECT IDENTIFIER ::= { id-OT-Innovation-ISE 1 }

id-ITS-ISE-ct-Data OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 1 }

id-ITS-ISE-ct-SignedData OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 2 }

id-ITS-ISE-ct-EncryptedData OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 3 }

id-ITS-ISE-ct-EnrolmentRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 4 }

id-ITS-ISE-ct-EnrolmentResponse OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 5 }

id-ITS-ISE-ct-AuthorizationRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 6 }

id-ITS-ISE-ct-AuthorizationResponse OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 7 }

id-ITS-ISE-ct-AuthorizationValidationRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 8 }

id-ITS-ISE-ct-AuthorizationValidationResponse OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 9 }

id-ITS-ISE-ct-SharedATRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 10 }

id-ITS-ISE-algos OBJECT IDENTIFIER ::= { id-OT-Innovation-ISE 2 }

id-aes128-CCM-103097 OBJECT IDENTIFIER ::= { id-ITS-ISE-algos 1 }

id-ecies-103097 OBJECT IDENTIFIER ::= { id-ITS-ISE-algos 2 }

id-ITS-ISE-attrs OBJECT IDENTIFIER ::= { id-OT-Innovation-ISE 3 }

id-messageDigest OBJECT IDENTIFIER ::= { id-ITS-ISE-attrs 1 }

id-contentType OBJECT IDENTIFIER ::= { id-ITS-ISE-attrs 2 }

id-signingTime OBJECT IDENTIFIER ::= { id-ITS-ISE-attrs 3 }

-- From FIPS 202 draft

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 46 / 53

id-sha3-256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101)

 csor(3) nistalgorithm(4) hashalgs(2) 8 }

/************

-- Misc

************/

Version ::= INTEGER { v1(0), v2(1) }

HashedId8 ::= OCTET STRING (SIZE(8))

Time32 ::= INTEGER (0..4294967295)

SubjectAssurance ::= OCTET STRING (SIZE(1))

Certificate ::= OCTET STRING

SubjectAttributes ::= OCTET STRING

ValidityRestrictions ::= OCTET STRING

ContentType ::= OBJECT IDENTIFIER

PublicKey ::= SEQUENCE {

 type ECCPublicKeyType,

 x INTEGER }

ECCPublicKeyType ::= ENUMERATED {

 compressed-lsb-y-0(2),

 compressed-lsb-y-1(3) }

SignatureValue ::= OCTET STRING

-- SignatureValue should be opaque to the user/caller of security functions.

-- Internally, an ECDSA signature contains the following structure:

Ecdsa-Sig-Value ::= SEQUENCE {

 r INTEGER,

 s INTEGER }

/************

-- A generic class for an algorithm

************/

ALGORITHM ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Type OPTIONAL

} WITH SYNTAX {

 ID &id

 [PARMS &Type]

}

/************

-- Signature algorithms declarations

************/

sign-ecdsa-with-sha256 ALGORITHM ::= {

 ID ecdsa-with-SHA256 }

sign-ecdsa-with-sha384 ALGORITHM ::= {

 ID ecdsa-with-SHA384 }

-- No OID defined yet

-- sign-ecdsa-with-sha3-256 ALGORITHM ::= {

-- ID ecdsa-with-SHA3-256 }

SignatureFunctions ALGORITHM ::=

 { sign-ecdsa-with-sha256

 | sign-ecdsa-with-sha384

 -- | sign-ecdsa-with-sha3-256

 , ... }

/************

-- Content encryption algorithm declarations

************/

CCMDefaultParameters ::= SEQUENCE {

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 47 / 53

 aes-nonce OCTET STRING (SIZE(12)) }

ce-aes-128-ccm-103097 ALGORITHM ::= {

 ID id-aes128-CCM-103097

 PARMS CCMDefaultParameters }

CCMParameters ::= SEQUENCE {

 aes-nonce OCTET STRING (SIZE(7..13)),

 aes-ICVlen AES-CCM-ICVlen DEFAULT 12 }

ce-aes-128-ccm ALGORITHM ::= {

 ID id-aes128-CCM

 PARMS CCMParameters }

ce-aes-256-ccm ALGORITHM ::= {

 ID id-aes256-CCM

 PARMS CCMParameters }

DataEncryptionFunctions ALGORITHM ::=

 { ce-aes-128-ccm-103097

 | ce-aes-128-ccm

 | ce-aes-256-ccm

 , ... }

/************

-- Key exchange algorithms declarations

************/

-- ECIESParameters ::= SEQUENCE {

-- kdf KeyDerivationFunction OPTIONAL,

-- sym SymmetricEncryption OPTIONAL,

-- mac MessageAuthenticationCode OPTIONAL }

-- ke-ecies ALGORITHM ::= {

-- ID ecies-specifiedParameters

-- PARMS ECIESParameters }

ECIESEncryptedKey103097 ::= SEQUENCE {

 v PublicKey,

 c OCTET STRING (SIZE(16)),

 t OCTET STRING (SIZE(16)) }

ke-ecies-103097 ALGORITHM ::= {

 ID id-ecies-103097 }

KeyEncryptionFunctions ALGORITHM ::=

 { ke-ecies-103097

 -- | ke-ecies,

 , ... }

/************

-- Hash algorithms declarations

************/

hash-sha256 ALGORITHM ::= {

 ID id-sha256 }

hash-sha384 ALGORITHM ::= {

 ID id-sha384 }

hash-sha3-256 ALGORITHM ::= {

 ID id-sha3-256 }

HashFunctions ALGORITHM ::=

 { hash-sha256

 | hash-sha384

 | hash-sha3-256

 , ... }

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 48 / 53

/************

-- AlgorithmIdentifiers using the preceding ObjectSets

************/

SignatureAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({SignatureFunctions}),

 parameters ALGORITHM.&Type({SignatureFunctions}{@algorithm}) OPTIONAL }

ContentEncryptionAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({DataEncryptionFunctions}),

 parameters ALGORITHM.&Type({DataEncryptionFunctions}{@algorithm}) OPTIONAL }

HashAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({HashFunctions}),

 parameters ALGORITHM.&Type({HashFunctions}{@algorithm}) OPTIONAL }

KeyEncryptionAlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({KeyEncryptionFunctions}),

 parameters ALGORITHM.&Type({KeyEncryptionFunctions}{@algorithm}) OPTIONAL }

/************

-- Attributes

************/

ATTRIBUTE ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Type OPTIONAL

} WITH SYNTAX {

 ID &id

 [VALUE &Type]

}

attr-messageDigest ATTRIBUTE ::= {

 ID id-messageDigest

 VALUE OCTET STRING }

attr-contentType ATTRIBUTE ::= {

 ID id-contentType

 VALUE ContentType }

attr-signingTime ATTRIBUTE ::= {

 ID id-signingTime

 VALUE Time32 }

SupportedAttributes ATTRIBUTE ::=

 { attr-messageDigest

 | attr-contentType

 | attr-signingTime

 , ... }

Attribute ::= SEQUENCE {

 attrType ATTRIBUTE.&id({SupportedAttributes}),

 attrValue ATTRIBUTE.&Type({SupportedAttributes}{@attrType}) OPTIONAL }

/************

-- Data

************/

Data ::= SEQUENCE {

 version Version DEFAULT v1,

 contentType ContentType,

 content OCTET STRING OPTIONAL }

/************

-- SignedData

************/

SignedData ::= SEQUENCE {

 version Version DEFAULT v1,

 hashAlgorithms HashAlgorithmsIdentifiers,

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 49 / 53

 signedContentType ContentType,

 signedContent OCTET STRING OPTIONAL,

 signerInfos SignerInfos }

HashAlgorithmsIdentifiers ::= SEQUENCE OF HashAlgorithmIdentifier

SignerInfos ::= SEQUENCE OF SignerInfo

SignerInfo ::= SEQUENCE {

 version Version DEFAULT v1,

 signer [0] SignerIdentifier DEFAULT self:NULL,

 digestAlgorithm [1] HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },

 signatureAlgorithm [2] SignatureAlgorithmIdentifier DEFAULT { algorithm ecdsa-with-SHA256 },

 signedAttributes SignedAttributes,

 certificateChain SEQUENCE OF Certificate OPTIONAL,

 signature SignatureValue }

SignerIdentifier ::= CHOICE {

 self NULL,

 certificateDigest CertificateDigest,

 certificate Certificate }

CertificateDigest ::= SEQUENCE {

 algorithm HashAlgorithmIdentifier DEFAULT { algorithm id-sha256 },

 digest HashedId8 }

SignedAttributes ::= SEQUENCE OF Attribute

/************

-- EncryptedData

************/

EncryptedData ::= SEQUENCE {

 version Version DEFAULT v1,

 recipients RecipientInfos,

 encryptedContentType ContentType,

 encryptionAlgorithm ContentEncryptionAlgorithmIdentifier,

 encryptedContent OCTET STRING OPTIONAL }

RecipientInfos ::= SEQUENCE SIZE (1..MAX) OF RecipientInfo

RecipientInfo ::= SEQUENCE {

 recipient HashedId8,

 kexalgid KeyEncryptionAlgorithmIdentifier DEFAULT { algorithm id-ecies-103097 },

 encryptedKeyMaterial OCTET STRING }

/************

-- EnrolmentRequest/Response

************/

InnerECRequest ::= SEQUENCE {

 requestIdentifier OCTET STRING (SIZE(16)),

 itsId IA5String,

 wantedSubjectAttributes SubjectAttributes,

 wantedValidityRestrictions ValidityRestrictions OPTIONAL,

 responseEncryptionKey PublicKey }

InnerECResponse ::= SEQUENCE {

 requestHash OCTET STRING (SIZE(16)),

 responseCode EnrolmentResponseCode,

 certificate Certificate OPTIONAL,

 cAContributionValue INTEGER OPTIONAL }

(WITH COMPONENTS { responseCode (ok), certificate PRESENT }

 | WITH COMPONENTS { responseCode ALL EXCEPT (ok), certificate ABSENT, cAContributionValue ABSENT }

)

-- requestHash is a truncated SHA256 of the whole Data structure received

EnrolmentResponseCode ::= ENUMERATED {

 ok(0),

 cantparse, -- valid for any structure

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 50 / 53

 badcontenttype, -- not encrypted, not signed, not enrolmentrequest

 imnottherecipient, -- the "recipients" doesn't include me

 unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 decryptionfailed, -- works for ECIES-HMAC and AES-CCM

 unknownits, -- can't retrieve the ITS from the itsId

 invalidsignature, -- signature verification of the request fails

 invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad

 baditsstatus, -- revoked, not yet active

 incompleterequest, -- some elements are missing

 deniedpermissions, -- requested permissions are not granted

 invalidkeys, -- either the verification_key of the encryption_key is bad

 deniedrequest, -- any other reason?

 ... }

/************

-- AuthorizationRequest/Response

************/

SharedATRequest ::= SEQUENCE {

 requestIdentifier OCTET STRING (SIZE(16)),

 eaId HashedId8,

 keyTag OCTET STRING (SIZE(16)),

 wantedSubjectAttributes SubjectAttributes,

 wantedValidityRestrictions ValidityRestrictions OPTIONAL,

 wantedStart Time32,

 responseEncryptionKey PublicKey }

InnerATRequest ::= SEQUENCE {

 verificationKey PublicKey,

 encryptionKey PublicKey OPTIONAL,

 hmacKey OCTET STRING (SIZE(32)),

 signedByEC SharedATRequest,

 detachedEncryptedSignature EncryptedData }

InnerATResponse ::= SEQUENCE {

 requestHash OCTET STRING (SIZE(16)),

 responseCode AuthorizationResponseCode,

 certificate Certificate OPTIONAL,

 cAContributionValue INTEGER OPTIONAL }

(WITH COMPONENTS { responseCode (ok), certificate PRESENT }

 | WITH COMPONENTS { responseCode ALL EXCEPT (ok), certificate ABSENT, cAContributionValue ABSENT }

)

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationResponseCode ::= ENUMERATED {

 ok(0),

 -- ITS->AA

 its-aa-cantparse, -- valid for any structure

 its-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest

 its-aa-imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't include me

 its-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 its-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM

 its-aa-keysdontmatch, -- HMAC keyTag verification fails

 its-aa-incompleterequest, -- some elements are missing

 its-aa-invalidencryptionkey, -- the responseEncryptionKey is bad

 its-aa-outofsyncrequest, -- signingTime is outside acceptable limits

 its-aa-unknownea, -- the EA identified by eaId is unknown to me

 its-aa-invalidea, -- the EA certificate is revoked

 its-aa-deniedpermissions, -- I, the AA, deny the requested permissions

 -- AA->EA

 aa-ea-cantreachea, -- the EA is unreachable (network error?)

 -- EA->AA

 ea-aa-cantparse, -- valid for any structure

 ea-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest

 ea-aa-imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't include me

 ea-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 ea-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM

 -- TODO: continuer

 invalidaa, -- the AA certificate presented is invalid/revoked/whatever

 invalidaasignature, -- the AA certificate presented can't validate the request signature

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 51 / 53

 wrongea, -- the encrypted signature doesn't designate me as the EA

 unknownits, -- can't retrieve the EC/ITS in my DB

 invalidsignature, -- signature verification of the request by the EC fails

 invalidencryptionkey, -- signature is good, but the key is bad

 deniedpermissions, -- permissions not granted

 deniedtoomanycerts, -- parallel limit

 ... }

/************

-- AuthorizationValidationRequest/Response

************/

AuthorizationValidationRequest ::= SEQUENCE {

 requestIdentifier OCTET STRING (SIZE(16)),

 sharedATRequest SharedATRequest,

 detachedEncryptedSignature EncryptedData,

 responseEncryptionKey PublicKey }

AuthorizationValidationResponse ::= SEQUENCE {

 requestHash OCTET STRING (SIZE(16)),

 responseCode AuthorizationValidationResponseCode,

 subjectAssurance SubjectAssurance OPTIONAL,

 startDate [0] Time32 OPTIONAL,

 endDate [1] Time32 OPTIONAL }

(WITH COMPONENTS { responseCode (ok), subjectAssurance PRESENT }

 | WITH COMPONENTS { responseCode ALL EXCEPT (ok), subjectAssurance ABSENT, startDate ABSENT,

endDate ABSENT }

)

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationValidationResponseCode ::= ENUMERATED {

 ok(0),

 cantparse, -- valid for any structure

 badcontenttype, -- not encrypted, not signed, not permissionsverificationrequest

 imnottherecipient, -- the "recipients" of the outermost encrypted data doesn't include me

 unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

 decryptionfailed, -- works for ECIES-HMAC and AES-CCM

 invalidaa, -- the AA certificate presented is invalid/revoked/whatever

 invalidaasignature, -- the AA certificate presented can't validate the request signature

 wrongea, -- the encrypted signature doesn't designate me as the EA

 unknownits, -- can't retrieve the EC/ITS in my DB

 invalidsignature, -- signature verification of the request by the EC fails

 invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad

 deniedpermissions, -- requested permissions not granted

 deniedtoomanycerts, -- parallel limit

 deniedrequest, -- any other reason?

 ... }

/************

-- Standalone certificate request (similar to PKCS#10)

************/

ITSCertificateRequest ::= SEQUENCE {

 itsCertReq ITSCertificateRequestContent,

 signatureAlgorithm SignatureAlgorithmIdentifier DEFAULT { algorithm ecdsa-with-SHA256 },

 signature SignatureValue }

ITSCertificateRequestContent ::= SEQUENCE {

 version Version DEFAULT v1,

 subjectName OCTET STRING (SIZE(0..32)),

 subjectAttributes SubjectAttributes,

 validityRestrictions ValidityRestrictions }

/************

-- CRL

************/

Crl ::= SEQUENCE {

 unsignedCrl ToBeSignedCrl,

 signatureAlgorithm SignatureAlgorithmIdentifier,

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 52 / 53

 signature SignatureValue }

-- signature is applied on unsignedCrl

ToBeSignedCrl ::= SEQUENCE {

 version Version,

 signer SignerIdentifier,

 thisUpdate Time32,

 nextUpdate Time32,

 entries SEQUENCE OF HashedId8 }

/************

-- TSL

************/

Tsl ::= SEQUENCE {

 unsignedTsl ToBeSignedTsl,

 signatureAlgorithm SignatureAlgorithmIdentifier,

 signature SignatureValue }

-- signature is applied on unsignedTsl

ToBeSignedTsl ::= SEQUENCE {

 version Version,

 signerInfo SignerIdentifier,

 notBefore Time32,

 notAfter Time32,

 trustServices SEQUENCE OF TrustService }

TrustService ::= SEQUENCE {

 serviceId TRUSTSERVICE.&id ({TrustServiceSet}),

 serviceValue TRUSTSERVICE.&Value ({TrustServiceSet}{@serviceId}) }

TrustServiceSet TRUSTSERVICE ::=

 { ts-foreignRoot

 | ts-renewedRoot

 | ts-ea

 | ts-aa

 | ts-distributionCenter

 | ts-otherTslPointer

 , ... }

TRUSTSERVICE ::= CLASS {

 &id ServiceType UNIQUE,

 &Value }

WITH SYNTAX {

 SYNTAX &Value

 ID &id }

ts-foreignRoot TRUSTSERVICE ::= {

 SYNTAX Certificate

 ID foreignRoot }

ts-renewedRoot TRUSTSERVICE ::= {

 SYNTAX SEQUENCE {

 rootCertificate Certificate,

 linkRootCertificate Certificate }

 ID renewedRoot }

ts-ea TRUSTSERVICE ::= {

 SYNTAX SEQUENCE {

 certificate Certificate,

 linkedCertificate Certificate OPTIONAL,

 accessPoint IA5String }

 ID ea }

ts-aa TRUSTSERVICE ::= {

 SYNTAX SEQUENCE {

 certificate Certificate,

 accessPoint IA5String }

 ID aa }

2.4.4.6_PKI architecture and technical specifications

22 - SCOOP_2.4.4.6_PKI architecture and technical specifications_2.00 53 / 53

ts-distributionCenter TRUSTSERVICE ::= {

 SYNTAX IA5String

 ID distributionCenter }

ts-otherTslPointer TRUSTSERVICE ::= {

 SYNTAX IA5String

 ID otherTslPointer }

ServiceType ::= ENUMERATED {

 foreignRoot,

 renewedRoot,

 ea,

 aa,

 distributionCenter,

 otherTslPointer,

 ... }

END -- of ISEEnrolmentProtocolv1

